diff --git a/Dockerfile b/Dockerfile index 37a7f72..6a42a95 100644 --- a/Dockerfile +++ b/Dockerfile @@ -1,17 +1,17 @@ -FROM python:3.8-slim-buster - -RUN mkdir /app - -COPY ./*.txt ./*.py ./*.sh ./*.onnx /app/ - - -RUN cd /app \ - && python3 -m pip install --upgrade pip -i https://pypi.douban.com/simple/\ - && pip3 install --no-cache-dir -r requirements.txt --extra-index-url https://pypi.douban.com/simple/ \ - && rm -rf /tmp/* && rm -rf /root/.cache/* \ - && sed -i 's#http://deb.debian.org#http://mirrors.aliyun.com/#g' /etc/apt/sources.list\ - && apt-get --allow-releaseinfo-change update && apt install libgl1-mesa-glx libglib2.0-0 -y +# 使用官方 Python 运行时作为父镜像 +FROM python:3.9-slim +# 设置工作目录 WORKDIR /app -CMD ["python3", "ocr_server.py", "--port", "9898", "--ocr", "--det"] +# 将当前目录内容复制到容器的 /app 中 +COPY . /app + +# 安装项目依赖 +RUN pip install --no-cache-dir -r requirements.txt + +# 暴露端口 8000 +EXPOSE 8000 + +# 运行应用 +CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8000"] diff --git a/LICENSE b/LICENSE deleted file mode 100644 index 261eeb9..0000000 --- a/LICENSE +++ /dev/null @@ -1,201 +0,0 @@ - Apache License - Version 2.0, January 2004 - http://www.apache.org/licenses/ - - TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION - - 1. Definitions. - - "License" shall mean the terms and conditions for use, reproduction, - and distribution as defined by Sections 1 through 9 of this document. - - "Licensor" shall mean the copyright owner or entity authorized by - the copyright owner that is granting the License. - - "Legal Entity" shall mean the union of the acting entity and all - other entities that control, are controlled by, or are under common - control with that entity. For the purposes of this definition, - "control" means (i) the power, direct or indirect, to cause the - direction or management of such entity, whether by contract or - otherwise, or (ii) ownership of fifty percent (50%) or more of the - outstanding shares, or (iii) beneficial ownership of such entity. - - "You" (or "Your") shall mean an individual or Legal Entity - exercising permissions granted by this License. - - "Source" form shall mean the preferred form for making modifications, - including but not limited to software source code, documentation - source, and configuration files. - - "Object" form shall mean any form resulting from mechanical - transformation or translation of a Source form, including but - not limited to compiled object code, generated documentation, - and conversions to other media types. - - "Work" shall mean the work of authorship, whether in Source or - Object form, made available under the License, as indicated by a - copyright notice that is included in or attached to the work - (an example is provided in the Appendix below). - - "Derivative Works" shall mean any work, whether in Source or Object - form, that is based on (or derived from) the Work and for which the - editorial revisions, annotations, elaborations, or other modifications - represent, as a whole, an original work of authorship. For the purposes - of this License, Derivative Works shall not include works that remain - separable from, or merely link (or bind by name) to the interfaces of, - the Work and Derivative Works thereof. - - "Contribution" shall mean any work of authorship, including - the original version of the Work and any modifications or additions - to that Work or Derivative Works thereof, that is intentionally - submitted to Licensor for inclusion in the Work by the copyright owner - or by an individual or Legal Entity authorized to submit on behalf of - the copyright owner. For the purposes of this definition, "submitted" - means any form of electronic, verbal, or written communication sent - to the Licensor or its representatives, including but not limited to - communication on electronic mailing lists, source code control systems, - and issue tracking systems that are managed by, or on behalf of, the - Licensor for the purpose of discussing and improving the Work, but - excluding communication that is conspicuously marked or otherwise - designated in writing by the copyright owner as "Not a Contribution." - - "Contributor" shall mean Licensor and any individual or Legal Entity - on behalf of whom a Contribution has been received by Licensor and - subsequently incorporated within the Work. - - 2. Grant of Copyright License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - copyright license to reproduce, prepare Derivative Works of, - publicly display, publicly perform, sublicense, and distribute the - Work and such Derivative Works in Source or Object form. - - 3. Grant of Patent License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - (except as stated in this section) patent license to make, have made, - use, offer to sell, sell, import, and otherwise transfer the Work, - where such license applies only to those patent claims licensable - by such Contributor that are necessarily infringed by their - Contribution(s) alone or by combination of their Contribution(s) - with the Work to which such Contribution(s) was submitted. If You - institute patent litigation against any entity (including a - cross-claim or counterclaim in a lawsuit) alleging that the Work - or a Contribution incorporated within the Work constitutes direct - or contributory patent infringement, then any patent licenses - granted to You under this License for that Work shall terminate - as of the date such litigation is filed. - - 4. Redistribution. You may reproduce and distribute copies of the - Work or Derivative Works thereof in any medium, with or without - modifications, and in Source or Object form, provided that You - meet the following conditions: - - (a) You must give any other recipients of the Work or - Derivative Works a copy of this License; and - - (b) You must cause any modified files to carry prominent notices - stating that You changed the files; and - - (c) You must retain, in the Source form of any Derivative Works - that You distribute, all copyright, patent, trademark, and - attribution notices from the Source form of the Work, - excluding those notices that do not pertain to any part of - the Derivative Works; and - - (d) If the Work includes a "NOTICE" text file as part of its - distribution, then any Derivative Works that You distribute must - include a readable copy of the attribution notices contained - within such NOTICE file, excluding those notices that do not - pertain to any part of the Derivative Works, in at least one - of the following places: within a NOTICE text file distributed - as part of the Derivative Works; within the Source form or - documentation, if provided along with the Derivative Works; or, - within a display generated by the Derivative Works, if and - wherever such third-party notices normally appear. The contents - of the NOTICE file are for informational purposes only and - do not modify the License. You may add Your own attribution - notices within Derivative Works that You distribute, alongside - or as an addendum to the NOTICE text from the Work, provided - that such additional attribution notices cannot be construed - as modifying the License. - - You may add Your own copyright statement to Your modifications and - may provide additional or different license terms and conditions - for use, reproduction, or distribution of Your modifications, or - for any such Derivative Works as a whole, provided Your use, - reproduction, and distribution of the Work otherwise complies with - the conditions stated in this License. - - 5. Submission of Contributions. Unless You explicitly state otherwise, - any Contribution intentionally submitted for inclusion in the Work - by You to the Licensor shall be under the terms and conditions of - this License, without any additional terms or conditions. - Notwithstanding the above, nothing herein shall supersede or modify - the terms of any separate license agreement you may have executed - with Licensor regarding such Contributions. - - 6. Trademarks. This License does not grant permission to use the trade - names, trademarks, service marks, or product names of the Licensor, - except as required for reasonable and customary use in describing the - origin of the Work and reproducing the content of the NOTICE file. - - 7. Disclaimer of Warranty. Unless required by applicable law or - agreed to in writing, Licensor provides the Work (and each - Contributor provides its Contributions) on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or - implied, including, without limitation, any warranties or conditions - of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A - PARTICULAR PURPOSE. You are solely responsible for determining the - appropriateness of using or redistributing the Work and assume any - risks associated with Your exercise of permissions under this License. - - 8. Limitation of Liability. In no event and under no legal theory, - whether in tort (including negligence), contract, or otherwise, - unless required by applicable law (such as deliberate and grossly - negligent acts) or agreed to in writing, shall any Contributor be - liable to You for damages, including any direct, indirect, special, - incidental, or consequential damages of any character arising as a - result of this License or out of the use or inability to use the - Work (including but not limited to damages for loss of goodwill, - work stoppage, computer failure or malfunction, or any and all - other commercial damages or losses), even if such Contributor - has been advised of the possibility of such damages. - - 9. Accepting Warranty or Additional Liability. While redistributing - the Work or Derivative Works thereof, You may choose to offer, - and charge a fee for, acceptance of support, warranty, indemnity, - or other liability obligations and/or rights consistent with this - License. However, in accepting such obligations, You may act only - on Your own behalf and on Your sole responsibility, not on behalf - of any other Contributor, and only if You agree to indemnify, - defend, and hold each Contributor harmless for any liability - incurred by, or claims asserted against, such Contributor by reason - of your accepting any such warranty or additional liability. - - END OF TERMS AND CONDITIONS - - APPENDIX: How to apply the Apache License to your work. - - To apply the Apache License to your work, attach the following - boilerplate notice, with the fields enclosed by brackets "[]" - replaced with your own identifying information. (Don't include - the brackets!) The text should be enclosed in the appropriate - comment syntax for the file format. We also recommend that a - file or class name and description of purpose be included on the - same "printed page" as the copyright notice for easier - identification within third-party archives. - - Copyright [yyyy] [name of copyright owner] - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. diff --git a/README.md b/README.md index 461d17f..b3b2960 100644 --- a/README.md +++ b/README.md @@ -1,85 +1,339 @@ -# ocr_api_server -使用ddddocr的最简api搭建项目,支持docker +# 🚀 DdddOcr API -**建议python版本3.7-3.9 64位** +![DdddOcr Logo](https://cdn.wenanzhe.com/img/logo.png!/crop/700x500a400a500) -再有不好好看文档的我就不管了啊!!! +> 基于 FastAPI 和 DdddOcr 的高性能 OCR API 服务,提供图像文字识别、滑动验证码匹配和目标检测功能。 +> +> [自营各类GPT聚合平台](https://juxiangyun.com) -# 运行方式 +## 📋 目录 -## 最简单运行方式 +- [系统要求](#-系统要求) +- [安装和启动](#-安装和启动) +- [API 端点](#-api-端点) +- [API 调用示例](#-api-调用示例) +- [注意事项](#-注意事项) +- [故障排除](#-故障排除) +- [许可证](#-许可证) -```shell -# 安装依赖 -pip install -r requirements.txt -i https://pypi.douban.com/simple +## 💻 系统要求 -# 运行 可选参数如下 -# --port 9898 指定端口,默认为9898 -# --ocr 开启ocr模块 默认开启 -# --old 只有ocr模块开启的情况下生效 默认不开启 -# --det 开启目标检测模式 +| 组件 | 版本 | +|------|------| +| 操作系统 | Linux(推荐 Ubuntu 20.04 LTS 或更高版本)| +| Docker | 20.10 或更高 | +| Docker Compose | 1.29 或更高 | -# 最简单运行方式,只开启ocr模块并以新模型计算 -python ocr_server.py --port 9898 --ocr +## 🚀 安装和启动 -# 开启ocr模块并使用旧模型计算 -python ocr_server.py --port 9898 --ocr --old +1. **克隆仓库** + ```bash + git clone https://github.com/your-repo/ddddocr-api.git + cd ddddocr-api + ``` -# 只开启目标检测模块 -python ocr_server.py --port 9898 --det +2. **构建 Docker 镜像 [一键docker环境服务器购买,可一元试用](https://app.rainyun.com/apps/rcs/buy) ** + ```bash + docker build -t ddddocr-api . + ``` -# 同时开启ocr模块以及目标检测模块 -python ocr_server.py --port 9898 --ocr --det +3. **启动服务** + ```bash + docker run -d -p 8000:8000 --name ddddocr-api-container ddddocr-api + ``` -# 同时开启ocr模块并使用旧模型计算以及目标检测模块 -python ocr_server.py --port 9898 --ocr --old --det +4. **验证服务** + ```bash + curl http://localhost:8000/docs + ``` + > 如果成功,您将看到 Swagger UI 文档页面。 + +5. **停止服务** -``` +- 如果使用 Docker: + ```bash + docker stop ddddocr-api-container + ``` -## docker运行方式(目测只能在Linux下部署) +- 如果使用 Docker Compose: + ```bash + docker-compose down + ``` + +6. **查看日志** -```shell -git clone https://github.com/sml2h3/ocr_api_server.git -# docker怎么安装?百度吧 +- 如果使用 Docker: + ```bash + docker logs ddddocr-api-container + ``` -cd ocr_api_server +- 如果使用 Docker Compose: + ```bash + docker-compose logs + ``` -# 修改entrypoint.sh中的参数,具体参数往上翻,默认9898端口,同时开启ocr模块以及目标检测模块 +## 🔌 API 端点 -# 编译镜像 -docker build -t ocr_server:v1 . +### 1. OCR 识别 -# 运行镜像 -docker run -p 9898:9898 -d ocr_server:v1 +🔗 **端点**:`POST /ocr` -``` +| 参数 | 类型 | 描述 | +|------|------|------| +| `file` | File | 图片文件(可选) | +| `image` | String | Base64 编码的图片字符串(可选) | +| `probability` | Boolean | 是否返回概率(默认:false) | +| `charsets` | String | 字符集(可选) | +| `png_fix` | Boolean | 是否进行 PNG 修复(默认:false) | -# 接口 +### 2. 滑动验证码匹配 -**具体请看test_api.py文件** +🔗 **端点**:`POST /slide_match` + +| 参数 | 类型 | 描述 | +|------|------|------| +| `target_file` | File | 目标图片文件(可选) | +| `background_file` | File | 背景图片文件(可选) | +| `target` | String | Base64 编码的目标图片字符串(可选) | +| `background` | String | Base64 编码的背景图片字符串(可选) | +| `simple_target` | Boolean | 是否使用简单目标(默认:false) | + +### 3. 目标检测 + +🔗 **端点**:`POST /detection` + +| 参数 | 类型 | 描述 | +|------|------|------| +| `file` | File | 图片文件(可选) | +| `image` | String | Base64 编码的图片字符串(可选) | + +## 📘 API 调用示例 + +
+Python ```python -# 1、测试是否启动成功,可以通过直接GET访问http://{host}:{port}/ping来测试,如果返回pong则启动成功 +import requests +import base64 -# 2、OCR/目标检测请求接口格式: +url = "http://localhost:8000/ocr" +image_path = "path/to/your/image.jpg" -# http://{host}:{port}/{opt}/{img_type}/{ret_type} -# opt:操作类型 ocr=OCR det=目标检测 slide=滑块(match和compare两种算法,默认为compare) -# img_type: 数据类型 file=文件上传方式 b64=base64(imgbyte)方式 默认为file方式 -# ret_type: 返回类型 json=返回json(识别出错会在msg里返回错误信息) text=返回文本格式(识别出错时回直接返回空文本) +with open(image_path, "rb") as image_file: + encoded_string = base64.b64encode(image_file.read()).decode('utf-8') -# 例子: +data = { + "image": encoded_string, + "probability": False, + "png_fix": False +} -# OCR请求 -# resp = requests.post("http://{host}:{port}/ocr/file", files={'image': image_bytes}) -# resp = requests.post("http://{host}:{port}/ocr/b64/text", data=base64.b64encode(file).decode()) - -# 目标检测请求 -# resp = requests.post("http://{host}:{port}/det/file", files={'image': image_bytes}) -# resp = requests.post("http://{host}:{port}/det/b64/json", data=base64.b64encode(file).decode()) - -# 滑块识别请求 -# resp = requests.post("http://{host}:{port}/slide/match/file", files={'target_img': target_bytes, 'bg_img': bg_bytes}) -# jsonstr = json.dumps({'target_img': target_b64str, 'bg_img': bg_b64str}) -# resp = requests.post("http://{host}:{port}/slide/compare/b64", files=base64.b64encode(jsonstr.encode()).decode()) +response = requests.post(url, data=data) +print(response.json()) ``` +
+
+Node.js + +```javascript +const axios = require('axios'); +const fs = require('fs'); + +const url = 'http://localhost:8000/ocr'; +const imagePath = 'path/to/your/image.jpg'; + +const imageBuffer = fs.readFileSync(imagePath); +const base64Image = imageBuffer.toString('base64'); + +const data = { + image: base64Image, + probability: false, + png_fix: false +}; + +axios.post(url, data) + .then(response => { + console.log(response.data); + }) + .catch(error => { + console.error('Error:', error); + }); +``` +
+ +
+C# + +```csharp +using System; +using System.Net.Http; +using System.IO; +using System.Threading.Tasks; + +class Program +{ + static async Task Main(string[] args) + { + var url = "http://localhost:8000/ocr"; + var imagePath = "path/to/your/image.jpg"; + + var imageBytes = File.ReadAllBytes(imagePath); + var base64Image = Convert.ToBase64String(imageBytes); + + var client = new HttpClient(); + var content = new MultipartFormDataContent(); + content.Add(new StringContent(base64Image), "image"); + content.Add(new StringContent("false"), "probability"); + content.Add(new StringContent("false"), "png_fix"); + + var response = await client.PostAsync(url, content); + var result = await response.Content.ReadAsStringAsync(); + Console.WriteLine(result); + } +} +``` +
+ +
+PHP + +```php + $imageData, + 'probability' => 'false', + 'png_fix' => 'false' +); + +$options = array( + 'http' => array( + 'header' => "Content-type: application/x-www-form-urlencoded\r\n", + 'method' => 'POST', + 'content' => http_build_query($data) + ) +); + +$context = stream_context_create($options); +$result = file_get_contents($url, false, $context); + +echo $result; +?> +``` +
+ +
+Go + +```go +package main + +import ( + "bytes" + "encoding/base64" + "encoding/json" + "fmt" + "io/ioutil" + "net/http" + "net/url" +) + +func main() { + apiURL := "http://localhost:8000/ocr" + imagePath := "path/to/your/image.jpg" + + imageData, err := ioutil.ReadFile(imagePath) + if err != nil { + panic(err) + } + + base64Image := base64.StdEncoding.EncodeToString(imageData) + + data := url.Values{} + data.Set("image", base64Image) + data.Set("probability", "false") + data.Set("png_fix", "false") + + resp, err := http.PostForm(apiURL, data) + if err != nil { + panic(err) + } + defer resp.Body.Close() + + body, err := ioutil.ReadAll(resp.Body) + if err != nil { + panic(err) + } + + fmt.Println(string(body)) +} +``` +
+ +
+易语言 + +```易语言 +.版本 2 + +.程序集 调用OCR接口 + +.子程序 主函数, 整数型 +.局部变量 请求头, QQ.HttpHeaders +.局部变量 请求内容, QQ.HttpMultiData +.局部变量 图片路径, 文本型 +.局部变量 图片数据, 字节集 +.局部变量 HTTP, QQ.Http + +图片路径 = "path/to/your/image.jpg" +图片数据 = 读入文件 (图片路径) + +请求头.添加 ("Content-Type", "application/x-www-form-urlencoded") + +请求内容.添加文本 ("image", 到Base64 (图片数据)) +请求内容.添加文本 ("probability", "false") +请求内容.添加文本 ("png_fix", "false") + +HTTP.发送POST请求 ("http://localhost:8000/ocr", 请求内容, 请求头) + +调试输出 (HTTP.获取返回文本()) + +返回 (0) +``` +
+ +> **注意**:使用示例前,请确保安装了必要的依赖库,并根据实际环境修改服务器地址和图片路径。 + +## ⚠️ 注意事项 + +- 确保防火墙允许访问 8000 端口。 +- 生产环境建议配置 HTTPS 和适当的身份验证机制。 +- 定期更新 Docker 镜像以获取最新的安全补丁和功能更新。 + +## 🔧 故障排除 + +遇到问题?请检查以下几点: + +1. 确保 Docker 服务正在运行。 +2. 检查容器日志: + ```bash + docker logs ddddocr-api-container + ``` +3. 确保没有其他服务占用 8000 端口。 + +> 如果问题仍然存在,请提交 issue 到本项目的 GitHub 仓库。 + +## 📄 许可证 + +本项目采用 MIT 许可证。详情请参见 [LICENSE](LICENSE) 文件。 + +--- + +

+ Made with ❤️ by sml2h3 +

diff --git a/app/__init__.py b/app/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/app/main.py b/app/main.py new file mode 100644 index 0000000..abf6249 --- /dev/null +++ b/app/main.py @@ -0,0 +1,77 @@ +from fastapi import FastAPI, File, UploadFile, HTTPException, Form +from fastapi.responses import JSONResponse +from typing import Optional, Union +import base64 +from .models import OCRRequest, SlideMatchRequest, DetectionRequest, APIResponse +from .services import ocr_service + +app = FastAPI() + + +def decode_image(image: Union[UploadFile, str, None]) -> bytes: + if isinstance(image, UploadFile): + return image.file.read() + elif isinstance(image, str): + try: + return base64.b64decode(image) + except: + raise HTTPException(status_code=400, detail="Invalid base64 string") + elif image is None: + raise HTTPException(status_code=400, detail="No image provided") + else: + raise HTTPException(status_code=400, detail="Invalid image input") + + +@app.post("/ocr", response_model=APIResponse) +async def ocr_endpoint( + file: Optional[UploadFile] = File(None), + image: Optional[str] = Form(None), + probability: bool = Form(False), + charsets: Optional[str] = Form(None), + png_fix: bool = Form(False) +): + try: + if file is None and image is None: + return APIResponse(code=400, message="Either file or image must be provided") + + image_bytes = decode_image(file or image) + result = ocr_service.ocr_classification(image_bytes, probability, charsets, png_fix) + return APIResponse(code=200, message="Success", data=result) + except Exception as e: + return APIResponse(code=500, message=str(e)) + + +@app.post("/slide_match", response_model=APIResponse) +async def slide_match_endpoint( + target_file: Optional[UploadFile] = File(None), + background_file: Optional[UploadFile] = File(None), + target: Optional[str] = Form(None), + background: Optional[str] = Form(None), + simple_target: bool = Form(False) +): + try: + if (target_file is None and target is None) or (background_file is None and background is None): + return APIResponse(code=400, message="Both target and background must be provided") + + target_bytes = decode_image(target_file or target) + background_bytes = decode_image(background_file or background) + result = ocr_service.slide_match(target_bytes, background_bytes, simple_target) + return APIResponse(code=200, message="Success", data=result) + except Exception as e: + return APIResponse(code=500, message=str(e)) + + +@app.post("/detection", response_model=APIResponse) +async def detection_endpoint( + file: Optional[UploadFile] = File(None), + image: Optional[str] = Form(None) +): + try: + if file is None and image is None: + return APIResponse(code=400, message="Either file or image must be provided") + + image_bytes = decode_image(file or image) + bboxes = ocr_service.detection(image_bytes) + return APIResponse(code=200, message="Success", data=bboxes) + except Exception as e: + return APIResponse(code=500, message=str(e)) diff --git a/app/models.py b/app/models.py new file mode 100644 index 0000000..b8e8464 --- /dev/null +++ b/app/models.py @@ -0,0 +1,40 @@ +from pydantic import BaseModel +from typing import Optional, List, Union, Any + + +class ImageInput(BaseModel): + image: Optional[str] = None # For base64 string + + +class OCRRequest(ImageInput): + probability: bool = False + charsets: Optional[str] = None + png_fix: bool = False + + +class OCRResponse(BaseModel): + result: Union[str, dict] + + +class SlideMatchRequest(BaseModel): + target: Optional[str] = None # For base64 string + background: Optional[str] = None # For base64 string + simple_target: bool = False + + +class SlideMatchResponse(BaseModel): + result: List[int] + + +class DetectionRequest(ImageInput): + pass + + +class DetectionResponse(BaseModel): + bboxes: List[List[int]] + + +class APIResponse(BaseModel): + code: int + message: str + data: Optional[Any] = None diff --git a/app/services.py b/app/services.py new file mode 100644 index 0000000..2a9683a --- /dev/null +++ b/app/services.py @@ -0,0 +1,24 @@ +import ddddocr +from typing import Union, List, Optional + +class OCRService: + def __init__(self): + self.ocr = ddddocr.DdddOcr() + self.det = ddddocr.DdddOcr(det=True) + self.slide = ddddocr.DdddOcr(det=False, ocr=False) + + def ocr_classification(self, image: bytes, probability: bool = False, charsets: Optional[str] = None, png_fix: bool = False) -> Union[str, dict]: + if charsets: + self.ocr.set_ranges(charsets) + result = self.ocr.classification(image, probability=probability, png_fix=png_fix) + return result + + def slide_match(self, target: bytes, background: bytes, simple_target: bool = False) -> List[int]: + result = self.slide.slide_match(target, background, simple_target=simple_target) + return result + + def detection(self, image: bytes) -> List[List[int]]: + bboxes = self.det.detection(image) + return bboxes + +ocr_service = OCRService() diff --git a/compare_bg.jpg b/compare_bg.jpg deleted file mode 100644 index 1a99db5..0000000 Binary files a/compare_bg.jpg and /dev/null differ diff --git a/compare_target.jpg b/compare_target.jpg deleted file mode 100644 index b2d83dc..0000000 Binary files a/compare_target.jpg and /dev/null differ diff --git a/docker-compose.yml b/docker-compose.yml new file mode 100644 index 0000000..eeba895 --- /dev/null +++ b/docker-compose.yml @@ -0,0 +1,12 @@ +version: '3.8' + +services: + ddddocr-api: + build: . + ports: + - "8000:8000" + volumes: + - .:/app + environment: + - DEBUG=1 + restart: always diff --git a/match_bg.png b/match_bg.png deleted file mode 100644 index adb3625..0000000 Binary files a/match_bg.png and /dev/null differ diff --git a/match_target.png b/match_target.png deleted file mode 100644 index 56cd1f7..0000000 Binary files a/match_target.png and /dev/null differ diff --git a/ocr_server.py b/ocr_server.py deleted file mode 100644 index b3fe8f0..0000000 --- a/ocr_server.py +++ /dev/null @@ -1,126 +0,0 @@ -# encoding=utf-8 -import argparse -import base64 -import json - -import ddddocr -from flask import Flask, request - -parser = argparse.ArgumentParser(description="使用ddddocr搭建的最简api服务") -parser.add_argument("-p", "--port", type=int, default=9898) -parser.add_argument("--ocr", action="store_true", help="开启ocr识别") -parser.add_argument("--old", action="store_true", help="OCR是否启动旧模型") -parser.add_argument("--det", action="store_true", help="开启目标检测") - -args = parser.parse_args() - -app = Flask(__name__) - - -class Server(object): - def __init__(self, ocr=True, det=False, old=False): - self.ocr_option = ocr - self.det_option = det - self.old_option = old - self.ocr = None - self.det = None - if self.ocr_option: - print("ocr模块开启") - if self.old_option: - print("使用OCR旧模型启动") - self.ocr = ddddocr.DdddOcr(old=True) - else: - print("使用OCR新模型启动,如需要使用旧模型,请额外添加参数 --old开启") - self.ocr = ddddocr.DdddOcr() - else: - print("ocr模块未开启,如需要使用,请使用参数 --ocr开启") - if self.det_option: - print("目标检测模块开启") - self.det = ddddocr.DdddOcr(det=True) - else: - print("目标检测模块未开启,如需要使用,请使用参数 --det开启") - - def classification(self, img: bytes): - if self.ocr_option: - return self.ocr.classification(img) - else: - raise Exception("ocr模块未开启") - - def detection(self, img: bytes): - if self.det_option: - return self.det.detection(img) - else: - raise Exception("目标检测模块模块未开启") - - def slide(self, target_img: bytes, bg_img: bytes, algo_type: str): - dddd = self.ocr or self.det or ddddocr.DdddOcr(ocr=False) - if algo_type == 'match': - return dddd.slide_match(target_img, bg_img) - elif algo_type == 'compare': - return dddd.slide_comparison(target_img, bg_img) - else: - raise Exception(f"不支持的滑块算法类型: {algo_type}") - -server = Server(ocr=args.ocr, det=args.det, old=args.old) - - -def get_img(request, img_type='file', img_name='image'): - if img_type == 'b64': - img = base64.b64decode(request.get_data()) # - try: # json str of multiple images - dic = json.loads(img) - img = base64.b64decode(dic.get(img_name).encode()) - except Exception as e: # just base64 of single image - pass - else: - img = request.files.get(img_name).read() - return img - - -def set_ret(result, ret_type='text'): - if ret_type == 'json': - if isinstance(result, Exception): - return json.dumps({"status": 200, "result": "", "msg": str(result)}) - else: - return json.dumps({"status": 200, "result": result, "msg": ""}) - # return json.dumps({"succ": isinstance(result, str), "result": str(result)}) - else: - if isinstance(result, Exception): - return '' - else: - return str(result).strip() - - -@app.route('//', methods=['POST']) -@app.route('///', methods=['POST']) -def ocr(opt, img_type='file', ret_type='text'): - try: - img = get_img(request, img_type) - if opt == 'ocr': - result = server.classification(img) - elif opt == 'det': - result = server.detection(img) - else: - raise f" is invalid" - return set_ret(result, ret_type) - except Exception as e: - return set_ret(e, ret_type) - -@app.route('/slide//', methods=['POST']) -@app.route('/slide///', methods=['POST']) -def slide(algo_type='compare', img_type='file', ret_type='text'): - try: - target_img = get_img(request, img_type, 'target_img') - bg_img = get_img(request, img_type, 'bg_img') - result = server.slide(target_img, bg_img, algo_type) - return set_ret(result, ret_type) - except Exception as e: - return set_ret(e, ret_type) - -@app.route('/ping', methods=['GET']) -def ping(): - return "pong" - - -if __name__ == '__main__': - app.run(host="0.0.0.0", port=args.port) diff --git a/requirements.txt b/requirements.txt index a8661fa..d9a7172 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,2 +1,4 @@ -ddddocr>=1.3.1 -flask \ No newline at end of file +fastapi==0.68.0 +uvicorn==0.15.0 +ddddocr==1.5.5 +python-multipart==0.0.5 \ No newline at end of file diff --git a/test.jpg b/test.jpg deleted file mode 100644 index d5894d2..0000000 Binary files a/test.jpg and /dev/null differ diff --git a/test_api.py b/test_api.py deleted file mode 100644 index ba77d7d..0000000 --- a/test_api.py +++ /dev/null @@ -1,111 +0,0 @@ -#!/usr/bin/python3.6 -# -*- coding: utf-8 -*- -# -# Copyright (C) 2021 # -# @Time : 2022/1/6 23:28 -# @Author : sml2h3 -# @Email : sml2h3@gmail.com -# @File : test_api.py -# @Software: PyCharm -import base64 -import json -import requests - -print(' ') -# ******************OCR识别部分开始****************** -host = "http://127.0.0.1:9898" -# 目标检测就把ocr改成det,其他相同 -# 方式一 -file = open(r'test.jpg', 'rb').read() -# file = open(r'test_calc.png', 'rb').read() - - -api_url = f"{host}/ocr/file" -resp = requests.post(api_url, files={'image': file}) -print(f"{api_url=}, {resp.text=}") - -api_url = f"{host}/ocr/file/json" -resp = requests.post(api_url, files={'image': file}) -print(f"{api_url=}, {resp.text=}") - -api_url = f"{host}/ocr/b64" -resp = requests.post(api_url, data=base64.b64encode(file).decode()) -print(f"{api_url=}, {resp.text=}") - -api_url = f"{host}/ocr/b64/json" -resp = requests.post(api_url, data=base64.b64encode(file).decode()) -print(f"{api_url=}, {resp.text=}") - -api_url = f"{host}/det/file" -resp = requests.post(api_url, files={'image': file}) -print(f"{api_url=}, {resp.text=}") - -api_url = f"{host}/det/file/json" -resp = requests.post(api_url, files={'image': file}) -print(f"{api_url=}, {resp.text=}") - -# 滑块识别 - -target_file = open(r'match_target.png', 'rb').read() -bg_file = open(r'match_bg.png', 'rb').read() - -api_url = f"{host}/slide/match/file" -resp = requests.post(api_url, files={'target_img': target_file, 'bg_img': bg_file}) -print(f"{api_url=}, {resp.text=}") - -api_url = f"{host}/slide/match/file/json" -resp = requests.post(api_url, files={'target_img': target_file, 'bg_img': bg_file}) -print(f"{api_url=}, {resp.text=}") - -api_url = f"{host}/slide/match/b64" -target_b64str = base64.b64encode(target_file).decode() -bg_b64str = base64.b64encode(bg_file).decode() -jsonstr = json.dumps({'target_img': target_b64str, 'bg_img': bg_b64str}) -resp = requests.post(api_url, data=base64.b64encode(jsonstr.encode()).decode()) -print(f"{api_url=}, {resp.text=}") - -api_url = f"{host}/slide/match/b64/json" -resp = requests.post(api_url, data=base64.b64encode(jsonstr.encode()).decode()) -print(f"{api_url=}, {resp.text=}") - -target_file = open(r'compare_target.jpg', 'rb').read() -bg_file = open(r'compare_bg.jpg', 'rb').read() - -api_url = f"{host}/slide/compare/file" -resp = requests.post(api_url, files={'target_img': target_file, 'bg_img': bg_file}) -print(f"{api_url=}, {resp.text=}") - -api_url = f"{host}/slide/compare/file/json" -resp = requests.post(api_url, files={'target_img': target_file, 'bg_img': bg_file}) -print(f"{api_url=}, {resp.text=}") - -api_url = f"{host}/slide/compare/b64" -target_b64str = base64.b64encode(target_file).decode() -bg_b64str = base64.b64encode(bg_file).decode() -jsonstr = json.dumps({'target_img': target_b64str, 'bg_img': bg_b64str}) -resp = requests.post(api_url, data=base64.b64encode(jsonstr.encode()).decode()) -print(f"{api_url=}, {resp.text=}") - -api_url = f"{host}/slide/compare/b64/json" -resp = requests.post(api_url, data=base64.b64encode(jsonstr.encode()).decode()) -print(f"{api_url=}, {resp.text=}") - -# 方式二 - -# 获取验证码图片 -# headers = { -# "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", -# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4195.1 Safari/537.36" -# } -# resp = requests.get('https://data.gdcic.net/Dop/CheckCode.aspx?codemark=408.15173910730016', headers=headers, verify=False) -# captcha_img = resp.content -# -# 识别 -# resp = requests.post(api_url, files={'image': captcha_img}) -# print('验证码结果', resp.text) -# -# # 保存验证码图片以供验证 -# with open('captcha.jpg', 'wb') as f: -# f.write(captcha_img) - -# ******************OCR识别部分开始****************** diff --git a/test_calc.png b/test_calc.png deleted file mode 100644 index 08b7e1c..0000000 Binary files a/test_calc.png and /dev/null differ diff --git a/tests/test_main.py b/tests/test_main.py new file mode 100644 index 0000000..e69de29