mirror of
https://github.com/sml2h3/ocr_api_server.git
synced 2025-05-02 10:12:02 +08:00
整体项目重构
This commit is contained in:
parent
7f37543ffb
commit
de0afe7a4c
28
Dockerfile
28
Dockerfile
@ -1,17 +1,17 @@
|
||||
FROM python:3.8-slim-buster
|
||||
|
||||
RUN mkdir /app
|
||||
|
||||
COPY ./*.txt ./*.py ./*.sh ./*.onnx /app/
|
||||
|
||||
|
||||
RUN cd /app \
|
||||
&& python3 -m pip install --upgrade pip -i https://pypi.douban.com/simple/\
|
||||
&& pip3 install --no-cache-dir -r requirements.txt --extra-index-url https://pypi.douban.com/simple/ \
|
||||
&& rm -rf /tmp/* && rm -rf /root/.cache/* \
|
||||
&& sed -i 's#http://deb.debian.org#http://mirrors.aliyun.com/#g' /etc/apt/sources.list\
|
||||
&& apt-get --allow-releaseinfo-change update && apt install libgl1-mesa-glx libglib2.0-0 -y
|
||||
# 使用官方 Python 运行时作为父镜像
|
||||
FROM python:3.9-slim
|
||||
|
||||
# 设置工作目录
|
||||
WORKDIR /app
|
||||
|
||||
CMD ["python3", "ocr_server.py", "--port", "9898", "--ocr", "--det"]
|
||||
# 将当前目录内容复制到容器的 /app 中
|
||||
COPY . /app
|
||||
|
||||
# 安装项目依赖
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# 暴露端口 8000
|
||||
EXPOSE 8000
|
||||
|
||||
# 运行应用
|
||||
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8000"]
|
||||
|
201
LICENSE
201
LICENSE
@ -1,201 +0,0 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
368
README.md
368
README.md
@ -1,85 +1,339 @@
|
||||
# ocr_api_server
|
||||
使用ddddocr的最简api搭建项目,支持docker
|
||||
# 🚀 DdddOcr API
|
||||
|
||||
**建议python版本3.7-3.9 64位**
|
||||

|
||||
|
||||
再有不好好看文档的我就不管了啊!!!
|
||||
> 基于 FastAPI 和 DdddOcr 的高性能 OCR API 服务,提供图像文字识别、滑动验证码匹配和目标检测功能。
|
||||
>
|
||||
> [自营各类GPT聚合平台](https://juxiangyun.com)
|
||||
|
||||
# 运行方式
|
||||
## 📋 目录
|
||||
|
||||
## 最简单运行方式
|
||||
- [系统要求](#-系统要求)
|
||||
- [安装和启动](#-安装和启动)
|
||||
- [API 端点](#-api-端点)
|
||||
- [API 调用示例](#-api-调用示例)
|
||||
- [注意事项](#-注意事项)
|
||||
- [故障排除](#-故障排除)
|
||||
- [许可证](#-许可证)
|
||||
|
||||
```shell
|
||||
# 安装依赖
|
||||
pip install -r requirements.txt -i https://pypi.douban.com/simple
|
||||
## 💻 系统要求
|
||||
|
||||
# 运行 可选参数如下
|
||||
# --port 9898 指定端口,默认为9898
|
||||
# --ocr 开启ocr模块 默认开启
|
||||
# --old 只有ocr模块开启的情况下生效 默认不开启
|
||||
# --det 开启目标检测模式
|
||||
| 组件 | 版本 |
|
||||
|------|------|
|
||||
| 操作系统 | Linux(推荐 Ubuntu 20.04 LTS 或更高版本)|
|
||||
| Docker | 20.10 或更高 |
|
||||
| Docker Compose | 1.29 或更高 |
|
||||
|
||||
# 最简单运行方式,只开启ocr模块并以新模型计算
|
||||
python ocr_server.py --port 9898 --ocr
|
||||
## 🚀 安装和启动
|
||||
|
||||
# 开启ocr模块并使用旧模型计算
|
||||
python ocr_server.py --port 9898 --ocr --old
|
||||
1. **克隆仓库**
|
||||
```bash
|
||||
git clone https://github.com/your-repo/ddddocr-api.git
|
||||
cd ddddocr-api
|
||||
```
|
||||
|
||||
# 只开启目标检测模块
|
||||
python ocr_server.py --port 9898 --det
|
||||
2. **构建 Docker 镜像 [一键docker环境服务器购买,可一元试用](https://app.rainyun.com/apps/rcs/buy) **
|
||||
```bash
|
||||
docker build -t ddddocr-api .
|
||||
```
|
||||
|
||||
# 同时开启ocr模块以及目标检测模块
|
||||
python ocr_server.py --port 9898 --ocr --det
|
||||
3. **启动服务**
|
||||
```bash
|
||||
docker run -d -p 8000:8000 --name ddddocr-api-container ddddocr-api
|
||||
```
|
||||
|
||||
# 同时开启ocr模块并使用旧模型计算以及目标检测模块
|
||||
python ocr_server.py --port 9898 --ocr --old --det
|
||||
4. **验证服务**
|
||||
```bash
|
||||
curl http://localhost:8000/docs
|
||||
```
|
||||
> 如果成功,您将看到 Swagger UI 文档页面。
|
||||
|
||||
5. **停止服务**
|
||||
|
||||
```
|
||||
- 如果使用 Docker:
|
||||
```bash
|
||||
docker stop ddddocr-api-container
|
||||
```
|
||||
|
||||
## docker运行方式(目测只能在Linux下部署)
|
||||
- 如果使用 Docker Compose:
|
||||
```bash
|
||||
docker-compose down
|
||||
```
|
||||
|
||||
6. **查看日志**
|
||||
|
||||
```shell
|
||||
git clone https://github.com/sml2h3/ocr_api_server.git
|
||||
# docker怎么安装?百度吧
|
||||
- 如果使用 Docker:
|
||||
```bash
|
||||
docker logs ddddocr-api-container
|
||||
```
|
||||
|
||||
cd ocr_api_server
|
||||
- 如果使用 Docker Compose:
|
||||
```bash
|
||||
docker-compose logs
|
||||
```
|
||||
|
||||
# 修改entrypoint.sh中的参数,具体参数往上翻,默认9898端口,同时开启ocr模块以及目标检测模块
|
||||
## 🔌 API 端点
|
||||
|
||||
# 编译镜像
|
||||
docker build -t ocr_server:v1 .
|
||||
### 1. OCR 识别
|
||||
|
||||
# 运行镜像
|
||||
docker run -p 9898:9898 -d ocr_server:v1
|
||||
🔗 **端点**:`POST /ocr`
|
||||
|
||||
```
|
||||
| 参数 | 类型 | 描述 |
|
||||
|------|------|------|
|
||||
| `file` | File | 图片文件(可选) |
|
||||
| `image` | String | Base64 编码的图片字符串(可选) |
|
||||
| `probability` | Boolean | 是否返回概率(默认:false) |
|
||||
| `charsets` | String | 字符集(可选) |
|
||||
| `png_fix` | Boolean | 是否进行 PNG 修复(默认:false) |
|
||||
|
||||
# 接口
|
||||
### 2. 滑动验证码匹配
|
||||
|
||||
**具体请看test_api.py文件**
|
||||
🔗 **端点**:`POST /slide_match`
|
||||
|
||||
| 参数 | 类型 | 描述 |
|
||||
|------|------|------|
|
||||
| `target_file` | File | 目标图片文件(可选) |
|
||||
| `background_file` | File | 背景图片文件(可选) |
|
||||
| `target` | String | Base64 编码的目标图片字符串(可选) |
|
||||
| `background` | String | Base64 编码的背景图片字符串(可选) |
|
||||
| `simple_target` | Boolean | 是否使用简单目标(默认:false) |
|
||||
|
||||
### 3. 目标检测
|
||||
|
||||
🔗 **端点**:`POST /detection`
|
||||
|
||||
| 参数 | 类型 | 描述 |
|
||||
|------|------|------|
|
||||
| `file` | File | 图片文件(可选) |
|
||||
| `image` | String | Base64 编码的图片字符串(可选) |
|
||||
|
||||
## 📘 API 调用示例
|
||||
|
||||
<details>
|
||||
<summary>Python</summary>
|
||||
|
||||
```python
|
||||
# 1、测试是否启动成功,可以通过直接GET访问http://{host}:{port}/ping来测试,如果返回pong则启动成功
|
||||
import requests
|
||||
import base64
|
||||
|
||||
# 2、OCR/目标检测请求接口格式:
|
||||
url = "http://localhost:8000/ocr"
|
||||
image_path = "path/to/your/image.jpg"
|
||||
|
||||
# http://{host}:{port}/{opt}/{img_type}/{ret_type}
|
||||
# opt:操作类型 ocr=OCR det=目标检测 slide=滑块(match和compare两种算法,默认为compare)
|
||||
# img_type: 数据类型 file=文件上传方式 b64=base64(imgbyte)方式 默认为file方式
|
||||
# ret_type: 返回类型 json=返回json(识别出错会在msg里返回错误信息) text=返回文本格式(识别出错时回直接返回空文本)
|
||||
with open(image_path, "rb") as image_file:
|
||||
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
||||
|
||||
# 例子:
|
||||
data = {
|
||||
"image": encoded_string,
|
||||
"probability": False,
|
||||
"png_fix": False
|
||||
}
|
||||
|
||||
# OCR请求
|
||||
# resp = requests.post("http://{host}:{port}/ocr/file", files={'image': image_bytes})
|
||||
# resp = requests.post("http://{host}:{port}/ocr/b64/text", data=base64.b64encode(file).decode())
|
||||
|
||||
# 目标检测请求
|
||||
# resp = requests.post("http://{host}:{port}/det/file", files={'image': image_bytes})
|
||||
# resp = requests.post("http://{host}:{port}/det/b64/json", data=base64.b64encode(file).decode())
|
||||
|
||||
# 滑块识别请求
|
||||
# resp = requests.post("http://{host}:{port}/slide/match/file", files={'target_img': target_bytes, 'bg_img': bg_bytes})
|
||||
# jsonstr = json.dumps({'target_img': target_b64str, 'bg_img': bg_b64str})
|
||||
# resp = requests.post("http://{host}:{port}/slide/compare/b64", files=base64.b64encode(jsonstr.encode()).decode())
|
||||
response = requests.post(url, data=data)
|
||||
print(response.json())
|
||||
```
|
||||
</details>
|
||||
<details>
|
||||
<summary>Node.js</summary>
|
||||
|
||||
```javascript
|
||||
const axios = require('axios');
|
||||
const fs = require('fs');
|
||||
|
||||
const url = 'http://localhost:8000/ocr';
|
||||
const imagePath = 'path/to/your/image.jpg';
|
||||
|
||||
const imageBuffer = fs.readFileSync(imagePath);
|
||||
const base64Image = imageBuffer.toString('base64');
|
||||
|
||||
const data = {
|
||||
image: base64Image,
|
||||
probability: false,
|
||||
png_fix: false
|
||||
};
|
||||
|
||||
axios.post(url, data)
|
||||
.then(response => {
|
||||
console.log(response.data);
|
||||
})
|
||||
.catch(error => {
|
||||
console.error('Error:', error);
|
||||
});
|
||||
```
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>C#</summary>
|
||||
|
||||
```csharp
|
||||
using System;
|
||||
using System.Net.Http;
|
||||
using System.IO;
|
||||
using System.Threading.Tasks;
|
||||
|
||||
class Program
|
||||
{
|
||||
static async Task Main(string[] args)
|
||||
{
|
||||
var url = "http://localhost:8000/ocr";
|
||||
var imagePath = "path/to/your/image.jpg";
|
||||
|
||||
var imageBytes = File.ReadAllBytes(imagePath);
|
||||
var base64Image = Convert.ToBase64String(imageBytes);
|
||||
|
||||
var client = new HttpClient();
|
||||
var content = new MultipartFormDataContent();
|
||||
content.Add(new StringContent(base64Image), "image");
|
||||
content.Add(new StringContent("false"), "probability");
|
||||
content.Add(new StringContent("false"), "png_fix");
|
||||
|
||||
var response = await client.PostAsync(url, content);
|
||||
var result = await response.Content.ReadAsStringAsync();
|
||||
Console.WriteLine(result);
|
||||
}
|
||||
}
|
||||
```
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>PHP</summary>
|
||||
|
||||
```php
|
||||
<?php
|
||||
|
||||
$url = 'http://localhost:8000/ocr';
|
||||
$imagePath = 'path/to/your/image.jpg';
|
||||
|
||||
$imageData = base64_encode(file_get_contents($imagePath));
|
||||
|
||||
$data = array(
|
||||
'image' => $imageData,
|
||||
'probability' => 'false',
|
||||
'png_fix' => 'false'
|
||||
);
|
||||
|
||||
$options = array(
|
||||
'http' => array(
|
||||
'header' => "Content-type: application/x-www-form-urlencoded\r\n",
|
||||
'method' => 'POST',
|
||||
'content' => http_build_query($data)
|
||||
)
|
||||
);
|
||||
|
||||
$context = stream_context_create($options);
|
||||
$result = file_get_contents($url, false, $context);
|
||||
|
||||
echo $result;
|
||||
?>
|
||||
```
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Go</summary>
|
||||
|
||||
```go
|
||||
package main
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"net/http"
|
||||
"net/url"
|
||||
)
|
||||
|
||||
func main() {
|
||||
apiURL := "http://localhost:8000/ocr"
|
||||
imagePath := "path/to/your/image.jpg"
|
||||
|
||||
imageData, err := ioutil.ReadFile(imagePath)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
base64Image := base64.StdEncoding.EncodeToString(imageData)
|
||||
|
||||
data := url.Values{}
|
||||
data.Set("image", base64Image)
|
||||
data.Set("probability", "false")
|
||||
data.Set("png_fix", "false")
|
||||
|
||||
resp, err := http.PostForm(apiURL, data)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
body, err := ioutil.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
fmt.Println(string(body))
|
||||
}
|
||||
```
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>易语言</summary>
|
||||
|
||||
```易语言
|
||||
.版本 2
|
||||
|
||||
.程序集 调用OCR接口
|
||||
|
||||
.子程序 主函数, 整数型
|
||||
.局部变量 请求头, QQ.HttpHeaders
|
||||
.局部变量 请求内容, QQ.HttpMultiData
|
||||
.局部变量 图片路径, 文本型
|
||||
.局部变量 图片数据, 字节集
|
||||
.局部变量 HTTP, QQ.Http
|
||||
|
||||
图片路径 = "path/to/your/image.jpg"
|
||||
图片数据 = 读入文件 (图片路径)
|
||||
|
||||
请求头.添加 ("Content-Type", "application/x-www-form-urlencoded")
|
||||
|
||||
请求内容.添加文本 ("image", 到Base64 (图片数据))
|
||||
请求内容.添加文本 ("probability", "false")
|
||||
请求内容.添加文本 ("png_fix", "false")
|
||||
|
||||
HTTP.发送POST请求 ("http://localhost:8000/ocr", 请求内容, 请求头)
|
||||
|
||||
调试输出 (HTTP.获取返回文本())
|
||||
|
||||
返回 (0)
|
||||
```
|
||||
</details>
|
||||
|
||||
> **注意**:使用示例前,请确保安装了必要的依赖库,并根据实际环境修改服务器地址和图片路径。
|
||||
|
||||
## ⚠️ 注意事项
|
||||
|
||||
- 确保防火墙允许访问 8000 端口。
|
||||
- 生产环境建议配置 HTTPS 和适当的身份验证机制。
|
||||
- 定期更新 Docker 镜像以获取最新的安全补丁和功能更新。
|
||||
|
||||
## 🔧 故障排除
|
||||
|
||||
遇到问题?请检查以下几点:
|
||||
|
||||
1. 确保 Docker 服务正在运行。
|
||||
2. 检查容器日志:
|
||||
```bash
|
||||
docker logs ddddocr-api-container
|
||||
```
|
||||
3. 确保没有其他服务占用 8000 端口。
|
||||
|
||||
> 如果问题仍然存在,请提交 issue 到本项目的 GitHub 仓库。
|
||||
|
||||
## 📄 许可证
|
||||
|
||||
本项目采用 MIT 许可证。详情请参见 [LICENSE](LICENSE) 文件。
|
||||
|
||||
---
|
||||
|
||||
<p align="center">
|
||||
Made with ❤️ by sml2h3
|
||||
</p>
|
||||
|
0
app/__init__.py
Normal file
0
app/__init__.py
Normal file
77
app/main.py
Normal file
77
app/main.py
Normal file
@ -0,0 +1,77 @@
|
||||
from fastapi import FastAPI, File, UploadFile, HTTPException, Form
|
||||
from fastapi.responses import JSONResponse
|
||||
from typing import Optional, Union
|
||||
import base64
|
||||
from .models import OCRRequest, SlideMatchRequest, DetectionRequest, APIResponse
|
||||
from .services import ocr_service
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
def decode_image(image: Union[UploadFile, str, None]) -> bytes:
|
||||
if isinstance(image, UploadFile):
|
||||
return image.file.read()
|
||||
elif isinstance(image, str):
|
||||
try:
|
||||
return base64.b64decode(image)
|
||||
except:
|
||||
raise HTTPException(status_code=400, detail="Invalid base64 string")
|
||||
elif image is None:
|
||||
raise HTTPException(status_code=400, detail="No image provided")
|
||||
else:
|
||||
raise HTTPException(status_code=400, detail="Invalid image input")
|
||||
|
||||
|
||||
@app.post("/ocr", response_model=APIResponse)
|
||||
async def ocr_endpoint(
|
||||
file: Optional[UploadFile] = File(None),
|
||||
image: Optional[str] = Form(None),
|
||||
probability: bool = Form(False),
|
||||
charsets: Optional[str] = Form(None),
|
||||
png_fix: bool = Form(False)
|
||||
):
|
||||
try:
|
||||
if file is None and image is None:
|
||||
return APIResponse(code=400, message="Either file or image must be provided")
|
||||
|
||||
image_bytes = decode_image(file or image)
|
||||
result = ocr_service.ocr_classification(image_bytes, probability, charsets, png_fix)
|
||||
return APIResponse(code=200, message="Success", data=result)
|
||||
except Exception as e:
|
||||
return APIResponse(code=500, message=str(e))
|
||||
|
||||
|
||||
@app.post("/slide_match", response_model=APIResponse)
|
||||
async def slide_match_endpoint(
|
||||
target_file: Optional[UploadFile] = File(None),
|
||||
background_file: Optional[UploadFile] = File(None),
|
||||
target: Optional[str] = Form(None),
|
||||
background: Optional[str] = Form(None),
|
||||
simple_target: bool = Form(False)
|
||||
):
|
||||
try:
|
||||
if (target_file is None and target is None) or (background_file is None and background is None):
|
||||
return APIResponse(code=400, message="Both target and background must be provided")
|
||||
|
||||
target_bytes = decode_image(target_file or target)
|
||||
background_bytes = decode_image(background_file or background)
|
||||
result = ocr_service.slide_match(target_bytes, background_bytes, simple_target)
|
||||
return APIResponse(code=200, message="Success", data=result)
|
||||
except Exception as e:
|
||||
return APIResponse(code=500, message=str(e))
|
||||
|
||||
|
||||
@app.post("/detection", response_model=APIResponse)
|
||||
async def detection_endpoint(
|
||||
file: Optional[UploadFile] = File(None),
|
||||
image: Optional[str] = Form(None)
|
||||
):
|
||||
try:
|
||||
if file is None and image is None:
|
||||
return APIResponse(code=400, message="Either file or image must be provided")
|
||||
|
||||
image_bytes = decode_image(file or image)
|
||||
bboxes = ocr_service.detection(image_bytes)
|
||||
return APIResponse(code=200, message="Success", data=bboxes)
|
||||
except Exception as e:
|
||||
return APIResponse(code=500, message=str(e))
|
40
app/models.py
Normal file
40
app/models.py
Normal file
@ -0,0 +1,40 @@
|
||||
from pydantic import BaseModel
|
||||
from typing import Optional, List, Union, Any
|
||||
|
||||
|
||||
class ImageInput(BaseModel):
|
||||
image: Optional[str] = None # For base64 string
|
||||
|
||||
|
||||
class OCRRequest(ImageInput):
|
||||
probability: bool = False
|
||||
charsets: Optional[str] = None
|
||||
png_fix: bool = False
|
||||
|
||||
|
||||
class OCRResponse(BaseModel):
|
||||
result: Union[str, dict]
|
||||
|
||||
|
||||
class SlideMatchRequest(BaseModel):
|
||||
target: Optional[str] = None # For base64 string
|
||||
background: Optional[str] = None # For base64 string
|
||||
simple_target: bool = False
|
||||
|
||||
|
||||
class SlideMatchResponse(BaseModel):
|
||||
result: List[int]
|
||||
|
||||
|
||||
class DetectionRequest(ImageInput):
|
||||
pass
|
||||
|
||||
|
||||
class DetectionResponse(BaseModel):
|
||||
bboxes: List[List[int]]
|
||||
|
||||
|
||||
class APIResponse(BaseModel):
|
||||
code: int
|
||||
message: str
|
||||
data: Optional[Any] = None
|
24
app/services.py
Normal file
24
app/services.py
Normal file
@ -0,0 +1,24 @@
|
||||
import ddddocr
|
||||
from typing import Union, List, Optional
|
||||
|
||||
class OCRService:
|
||||
def __init__(self):
|
||||
self.ocr = ddddocr.DdddOcr()
|
||||
self.det = ddddocr.DdddOcr(det=True)
|
||||
self.slide = ddddocr.DdddOcr(det=False, ocr=False)
|
||||
|
||||
def ocr_classification(self, image: bytes, probability: bool = False, charsets: Optional[str] = None, png_fix: bool = False) -> Union[str, dict]:
|
||||
if charsets:
|
||||
self.ocr.set_ranges(charsets)
|
||||
result = self.ocr.classification(image, probability=probability, png_fix=png_fix)
|
||||
return result
|
||||
|
||||
def slide_match(self, target: bytes, background: bytes, simple_target: bool = False) -> List[int]:
|
||||
result = self.slide.slide_match(target, background, simple_target=simple_target)
|
||||
return result
|
||||
|
||||
def detection(self, image: bytes) -> List[List[int]]:
|
||||
bboxes = self.det.detection(image)
|
||||
return bboxes
|
||||
|
||||
ocr_service = OCRService()
|
BIN
compare_bg.jpg
BIN
compare_bg.jpg
Binary file not shown.
Before Width: | Height: | Size: 8.3 KiB |
Binary file not shown.
Before Width: | Height: | Size: 8.0 KiB |
12
docker-compose.yml
Normal file
12
docker-compose.yml
Normal file
@ -0,0 +1,12 @@
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
ddddocr-api:
|
||||
build: .
|
||||
ports:
|
||||
- "8000:8000"
|
||||
volumes:
|
||||
- .:/app
|
||||
environment:
|
||||
- DEBUG=1
|
||||
restart: always
|
BIN
match_bg.png
BIN
match_bg.png
Binary file not shown.
Before Width: | Height: | Size: 94 KiB |
BIN
match_target.png
BIN
match_target.png
Binary file not shown.
Before Width: | Height: | Size: 4.1 KiB |
126
ocr_server.py
126
ocr_server.py
@ -1,126 +0,0 @@
|
||||
# encoding=utf-8
|
||||
import argparse
|
||||
import base64
|
||||
import json
|
||||
|
||||
import ddddocr
|
||||
from flask import Flask, request
|
||||
|
||||
parser = argparse.ArgumentParser(description="使用ddddocr搭建的最简api服务")
|
||||
parser.add_argument("-p", "--port", type=int, default=9898)
|
||||
parser.add_argument("--ocr", action="store_true", help="开启ocr识别")
|
||||
parser.add_argument("--old", action="store_true", help="OCR是否启动旧模型")
|
||||
parser.add_argument("--det", action="store_true", help="开启目标检测")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
|
||||
class Server(object):
|
||||
def __init__(self, ocr=True, det=False, old=False):
|
||||
self.ocr_option = ocr
|
||||
self.det_option = det
|
||||
self.old_option = old
|
||||
self.ocr = None
|
||||
self.det = None
|
||||
if self.ocr_option:
|
||||
print("ocr模块开启")
|
||||
if self.old_option:
|
||||
print("使用OCR旧模型启动")
|
||||
self.ocr = ddddocr.DdddOcr(old=True)
|
||||
else:
|
||||
print("使用OCR新模型启动,如需要使用旧模型,请额外添加参数 --old开启")
|
||||
self.ocr = ddddocr.DdddOcr()
|
||||
else:
|
||||
print("ocr模块未开启,如需要使用,请使用参数 --ocr开启")
|
||||
if self.det_option:
|
||||
print("目标检测模块开启")
|
||||
self.det = ddddocr.DdddOcr(det=True)
|
||||
else:
|
||||
print("目标检测模块未开启,如需要使用,请使用参数 --det开启")
|
||||
|
||||
def classification(self, img: bytes):
|
||||
if self.ocr_option:
|
||||
return self.ocr.classification(img)
|
||||
else:
|
||||
raise Exception("ocr模块未开启")
|
||||
|
||||
def detection(self, img: bytes):
|
||||
if self.det_option:
|
||||
return self.det.detection(img)
|
||||
else:
|
||||
raise Exception("目标检测模块模块未开启")
|
||||
|
||||
def slide(self, target_img: bytes, bg_img: bytes, algo_type: str):
|
||||
dddd = self.ocr or self.det or ddddocr.DdddOcr(ocr=False)
|
||||
if algo_type == 'match':
|
||||
return dddd.slide_match(target_img, bg_img)
|
||||
elif algo_type == 'compare':
|
||||
return dddd.slide_comparison(target_img, bg_img)
|
||||
else:
|
||||
raise Exception(f"不支持的滑块算法类型: {algo_type}")
|
||||
|
||||
server = Server(ocr=args.ocr, det=args.det, old=args.old)
|
||||
|
||||
|
||||
def get_img(request, img_type='file', img_name='image'):
|
||||
if img_type == 'b64':
|
||||
img = base64.b64decode(request.get_data()) #
|
||||
try: # json str of multiple images
|
||||
dic = json.loads(img)
|
||||
img = base64.b64decode(dic.get(img_name).encode())
|
||||
except Exception as e: # just base64 of single image
|
||||
pass
|
||||
else:
|
||||
img = request.files.get(img_name).read()
|
||||
return img
|
||||
|
||||
|
||||
def set_ret(result, ret_type='text'):
|
||||
if ret_type == 'json':
|
||||
if isinstance(result, Exception):
|
||||
return json.dumps({"status": 200, "result": "", "msg": str(result)})
|
||||
else:
|
||||
return json.dumps({"status": 200, "result": result, "msg": ""})
|
||||
# return json.dumps({"succ": isinstance(result, str), "result": str(result)})
|
||||
else:
|
||||
if isinstance(result, Exception):
|
||||
return ''
|
||||
else:
|
||||
return str(result).strip()
|
||||
|
||||
|
||||
@app.route('/<opt>/<img_type>', methods=['POST'])
|
||||
@app.route('/<opt>/<img_type>/<ret_type>', methods=['POST'])
|
||||
def ocr(opt, img_type='file', ret_type='text'):
|
||||
try:
|
||||
img = get_img(request, img_type)
|
||||
if opt == 'ocr':
|
||||
result = server.classification(img)
|
||||
elif opt == 'det':
|
||||
result = server.detection(img)
|
||||
else:
|
||||
raise f"<opt={opt}> is invalid"
|
||||
return set_ret(result, ret_type)
|
||||
except Exception as e:
|
||||
return set_ret(e, ret_type)
|
||||
|
||||
@app.route('/slide/<algo_type>/<img_type>', methods=['POST'])
|
||||
@app.route('/slide/<algo_type>/<img_type>/<ret_type>', methods=['POST'])
|
||||
def slide(algo_type='compare', img_type='file', ret_type='text'):
|
||||
try:
|
||||
target_img = get_img(request, img_type, 'target_img')
|
||||
bg_img = get_img(request, img_type, 'bg_img')
|
||||
result = server.slide(target_img, bg_img, algo_type)
|
||||
return set_ret(result, ret_type)
|
||||
except Exception as e:
|
||||
return set_ret(e, ret_type)
|
||||
|
||||
@app.route('/ping', methods=['GET'])
|
||||
def ping():
|
||||
return "pong"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(host="0.0.0.0", port=args.port)
|
@ -1,2 +1,4 @@
|
||||
ddddocr>=1.3.1
|
||||
flask
|
||||
fastapi==0.68.0
|
||||
uvicorn==0.15.0
|
||||
ddddocr==1.5.5
|
||||
python-multipart==0.0.5
|
111
test_api.py
111
test_api.py
@ -1,111 +0,0 @@
|
||||
#!/usr/bin/python3.6
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright (C) 2021 #
|
||||
# @Time : 2022/1/6 23:28
|
||||
# @Author : sml2h3
|
||||
# @Email : sml2h3@gmail.com
|
||||
# @File : test_api.py
|
||||
# @Software: PyCharm
|
||||
import base64
|
||||
import json
|
||||
import requests
|
||||
|
||||
print(' ')
|
||||
# ******************OCR识别部分开始******************
|
||||
host = "http://127.0.0.1:9898"
|
||||
# 目标检测就把ocr改成det,其他相同
|
||||
# 方式一
|
||||
file = open(r'test.jpg', 'rb').read()
|
||||
# file = open(r'test_calc.png', 'rb').read()
|
||||
|
||||
|
||||
api_url = f"{host}/ocr/file"
|
||||
resp = requests.post(api_url, files={'image': file})
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
api_url = f"{host}/ocr/file/json"
|
||||
resp = requests.post(api_url, files={'image': file})
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
api_url = f"{host}/ocr/b64"
|
||||
resp = requests.post(api_url, data=base64.b64encode(file).decode())
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
api_url = f"{host}/ocr/b64/json"
|
||||
resp = requests.post(api_url, data=base64.b64encode(file).decode())
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
api_url = f"{host}/det/file"
|
||||
resp = requests.post(api_url, files={'image': file})
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
api_url = f"{host}/det/file/json"
|
||||
resp = requests.post(api_url, files={'image': file})
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
# 滑块识别
|
||||
|
||||
target_file = open(r'match_target.png', 'rb').read()
|
||||
bg_file = open(r'match_bg.png', 'rb').read()
|
||||
|
||||
api_url = f"{host}/slide/match/file"
|
||||
resp = requests.post(api_url, files={'target_img': target_file, 'bg_img': bg_file})
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
api_url = f"{host}/slide/match/file/json"
|
||||
resp = requests.post(api_url, files={'target_img': target_file, 'bg_img': bg_file})
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
api_url = f"{host}/slide/match/b64"
|
||||
target_b64str = base64.b64encode(target_file).decode()
|
||||
bg_b64str = base64.b64encode(bg_file).decode()
|
||||
jsonstr = json.dumps({'target_img': target_b64str, 'bg_img': bg_b64str})
|
||||
resp = requests.post(api_url, data=base64.b64encode(jsonstr.encode()).decode())
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
api_url = f"{host}/slide/match/b64/json"
|
||||
resp = requests.post(api_url, data=base64.b64encode(jsonstr.encode()).decode())
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
target_file = open(r'compare_target.jpg', 'rb').read()
|
||||
bg_file = open(r'compare_bg.jpg', 'rb').read()
|
||||
|
||||
api_url = f"{host}/slide/compare/file"
|
||||
resp = requests.post(api_url, files={'target_img': target_file, 'bg_img': bg_file})
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
api_url = f"{host}/slide/compare/file/json"
|
||||
resp = requests.post(api_url, files={'target_img': target_file, 'bg_img': bg_file})
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
api_url = f"{host}/slide/compare/b64"
|
||||
target_b64str = base64.b64encode(target_file).decode()
|
||||
bg_b64str = base64.b64encode(bg_file).decode()
|
||||
jsonstr = json.dumps({'target_img': target_b64str, 'bg_img': bg_b64str})
|
||||
resp = requests.post(api_url, data=base64.b64encode(jsonstr.encode()).decode())
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
api_url = f"{host}/slide/compare/b64/json"
|
||||
resp = requests.post(api_url, data=base64.b64encode(jsonstr.encode()).decode())
|
||||
print(f"{api_url=}, {resp.text=}")
|
||||
|
||||
# 方式二
|
||||
|
||||
# 获取验证码图片
|
||||
# headers = {
|
||||
# "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8",
|
||||
# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4195.1 Safari/537.36"
|
||||
# }
|
||||
# resp = requests.get('https://data.gdcic.net/Dop/CheckCode.aspx?codemark=408.15173910730016', headers=headers, verify=False)
|
||||
# captcha_img = resp.content
|
||||
#
|
||||
# 识别
|
||||
# resp = requests.post(api_url, files={'image': captcha_img})
|
||||
# print('验证码结果', resp.text)
|
||||
#
|
||||
# # 保存验证码图片以供验证
|
||||
# with open('captcha.jpg', 'wb') as f:
|
||||
# f.write(captcha_img)
|
||||
|
||||
# ******************OCR识别部分开始******************
|
BIN
test_calc.png
BIN
test_calc.png
Binary file not shown.
Before Width: | Height: | Size: 13 KiB |
0
tests/test_main.py
Normal file
0
tests/test_main.py
Normal file
Loading…
Reference in New Issue
Block a user