mirror of
https://github.com/sml2h3/ddddocr.git
synced 2025-05-07 13:29:26 +08:00
422 lines
16 KiB
Markdown
422 lines
16 KiB
Markdown
|
||
|
||
# DdddOcr 带带弟弟OCR通用验证码离线本地识别SDK免费开源版
|
||
|
||
DdddOcr,其由作者与kerlomz共同合作完成,通过大批量生成随机数据后进行深度网络训练,本身并非针对任何一家验证码厂商而制作,本库使用效果完全靠玄学,可能可以识别,可能不能识别。
|
||
|
||
DdddOcr、最简依赖的理念,尽量减少用户的配置和使用成本,希望给每一位测试者带来舒适的体验
|
||
|
||
项目地址: [点我传送](https://github.com/sml2h3/ddddocr)
|
||
|
||
<!-- PROJECT SHIELDS -->
|
||
|
||
[![Contributors][contributors-shield]][contributors-url]
|
||
[![Forks][forks-shield]][forks-url]
|
||
[![Stargazers][stars-shield]][stars-url]
|
||
[![Issues][issues-shield]][issues-url]
|
||
[![MIT License][license-shield]][license-url]
|
||
|
||
<!-- PROJECT LOGO -->
|
||
<br />
|
||
|
||
<p align="center">
|
||
<a href="https://github.com/shaojintian/Best_README_template/">
|
||
<img src="https://cdn.wenanzhe.com/img/logo.png!/crop/700x500a400a500" alt="Logo">
|
||
</a>
|
||
<p align="center">
|
||
一个容易使用的通用验证码识别python库
|
||
<br />
|
||
<a href="https://github.com/shaojintian/Best_README_template"><strong>探索本项目的文档 »</strong></a>
|
||
<br />
|
||
<br />
|
||
·
|
||
<a href="https://github.com/sml2h3/ddddocr/issues">报告Bug</a>
|
||
·
|
||
<a href="https://github.com/sml2h3/ddddocr/issues">提出新特性</a>
|
||
</p>
|
||
|
||
</p>
|
||
|
||
|
||
## 目录
|
||
|
||
- [赞助合作商](#赞助合作商)
|
||
- [上手指南](#上手指南)
|
||
- [环境支持](#环境支持)
|
||
- [安装步骤](#安装步骤)
|
||
- [文件目录说明](#文件目录说明)
|
||
- [项目底层支持](#项目底层支持)
|
||
- [使用文档](#使用文档)
|
||
- [基础ocr识别能力](#i-基础ocr识别能力)
|
||
- [目标检测能力](#ii-目标检测能力)
|
||
- [滑块检测](#ⅲ-滑块检测)
|
||
- [OCR概率输出](#ⅳ-ocr概率输出)
|
||
- [自定义OCR训练模型导入](#ⅴ-自定义ocr训练模型导入)
|
||
- [版本控制](#版本控制)
|
||
- [相关推荐文章or项目](#相关推荐文章or项目)
|
||
- [作者](#作者)
|
||
- [捐赠](#捐赠)
|
||
- [Star历史](#Star历史)
|
||
|
||
|
||
|
||
### 赞助合作商
|
||
|
||
| | 赞助合作商 | 推荐理由 |
|
||
|------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------|
|
||
|  | [YesCaptcha](https://yescaptcha.com/i/NSwk7i) | 谷歌reCaptcha验证码 / hCaptcha验证码 / funCaptcha验证码商业级识别接口 [点我](https://yescaptcha.com/i/NSwk7i) 直达VIP4 |
|
||
|  | [超级鹰](https://www.chaojiying.com/) | 全球领先的智能图片分类及识别商家,安全、准确、高效、稳定、开放,强大的技术及校验团队,支持大并发。7*24h作业进度管理 |
|
||
|  | [Malenia](https://malenia.iinti.cn/malenia-doc/) | Malenia企业级代理IP网关平台/代理IP分销软件 |
|
||
|
||
|
||
### 上手指南
|
||
|
||
###### 环境支持
|
||
|
||
|
||
|
||
| 系统 | CPU | GPU | 最大支持py版本 | 备注 |
|
||
|------------------|-----|------|----------|--------------------------------------------------------------------|
|
||
| Windows 64位 | √ | √ | 3.12 | 部分版本windows需要安装<a href="https://www.ghxi.com/yxkhj.html">vc运行库</a> |
|
||
| Windows 32位 | × | × | - | |
|
||
| Linux 64 / ARM64 | √ | √ | 3.12 | |
|
||
| Linux 32 | × | × | - | |
|
||
| Macos X64 | √ | √ | 3.12 | M1/M2/M3...芯片参考<a href="https://github.com/sml2h3/ddddocr/issues/67">#67</a> |
|
||
|
||
###### **安装步骤**
|
||
|
||
**i. 从pypi安装**
|
||
```sh
|
||
pip install ddddocr
|
||
```
|
||
|
||
**ii. 从源码安装**
|
||
```sh
|
||
git clone https://github.com/sml2h3/ddddocr.git
|
||
cd ddddocr
|
||
python setup.py
|
||
```
|
||
|
||
**请勿直接在ddddocr项目的根目录内直接import ddddocr**,请确保你的开发项目目录名称不为ddddocr,此为基础常识。
|
||
|
||
### 文件目录说明
|
||
eg:
|
||
|
||
```
|
||
ddddocr
|
||
├── MANIFEST.in
|
||
├── LICENSE
|
||
├── README.md
|
||
├── /ddddocr/
|
||
│ │── __init__.py 主代码库文件
|
||
│ │── common.onnx 新ocr模型
|
||
│ │── common_det.onnx 目标检测模型
|
||
│ │── common_old.onnx 老ocr模型
|
||
│ │── logo.png
|
||
│ │── README.md
|
||
│ │── requirements.txt
|
||
├── logo.png
|
||
└── setup.py
|
||
|
||
```
|
||
|
||
### 项目底层支持
|
||
|
||
本项目基于[dddd_trainer](https://github.com/sml2h3/dddd_trainer) 训练所得,训练底层框架位pytorch,ddddocr推理底层抵赖于[onnxruntime](https://pypi.org/project/onnxruntime/),故本项目的最大兼容性与python版本支持主要取决于[onnxruntime](https://pypi.org/project/onnxruntime/)。
|
||
|
||
### 使用文档
|
||
|
||
##### i. 基础ocr识别能力
|
||
|
||
主要用于识别单行文字,即文字部分占据图片的主体部分,例如常见的英数验证码等,本项目可以对中文、英文(随机大小写or通过设置结果范围圈定大小写)、数字以及部分特殊字符。
|
||
|
||
```python
|
||
# example.py
|
||
import ddddocr
|
||
|
||
ocr = ddddocr.DdddOcr()
|
||
|
||
image = open("example.jpg", "rb").read()
|
||
result = ocr.classification(image)
|
||
print(result)
|
||
```
|
||
|
||
本库内置有两套ocr模型,默认情况下不会自动切换,需要在初始化ddddocr的时候通过参数进行切换
|
||
|
||
```python
|
||
# example.py
|
||
import ddddocr
|
||
|
||
ocr = ddddocr.DdddOcr(beta=True) # 切换为第二套ocr模型
|
||
|
||
image = open("example.jpg", "rb").read()
|
||
result = ocr.classification(image)
|
||
print(result)
|
||
```
|
||
|
||
**提示**
|
||
对于部分透明黑色png格式图片得识别支持: `classification` 方法 使用 `png_fix` 参数,默认为False
|
||
|
||
```python
|
||
ocr.classification(image, png_fix=True)
|
||
```
|
||
|
||
**注意**
|
||
|
||
之前发现很多人喜欢在每次ocr识别的时候都重新初始化ddddocr,即每次都执行```ocr = ddddocr.DdddOcr()```,这是错误的,通常来说只需要初始化一次即可,因为每次初始化和初始化后的第一次识别速度都非常慢
|
||
|
||
|
||
**参考例图**
|
||
|
||
包括且不限于以下图片
|
||
|
||
<img src="https://cdn.wenanzhe.com/img/20210715211733855.png" alt="captcha" width="150">
|
||
<img src="https://cdn.wenanzhe.com/img/78b7f57d-371d-4b65-afb2-d19608ae1892.png" alt="captcha" width="150">
|
||
<img src="https://cdn.wenanzhe.com/img/%E5%BE%AE%E4%BF%A1%E5%9B%BE%E7%89%87_20211226142305.png" alt="captcha" width="150">
|
||
<img src="https://cdn.wenanzhe.com/img/%E5%BE%AE%E4%BF%A1%E5%9B%BE%E7%89%87_20211226142325.png" alt="captcha" width="150">
|
||
<img src="https://cdn.wenanzhe.com/img/2AMLyA_fd83e1f1800e829033417ae6dd0e0ae0.png" alt="captcha" width="150">
|
||
<img src="https://cdn.wenanzhe.com/img/aabd_181ae81dd5526b8b89f987d1179266ce.jpg" alt="captcha" width="150">
|
||
<br />
|
||
<img src="https://cdn.wenanzhe.com/img/2bghz_b504e9f9de1ed7070102d21c6481e0cf.png" alt="captcha" width="150">
|
||
<img src="https://cdn.wenanzhe.com/img/0000_z4ecc2p65rxc610x.jpg" alt="captcha" width="150">
|
||
<img src="https://cdn.wenanzhe.com/img/2acd_0586b6b36858a4e8a9939db8a7ec07b7.jpg" alt="captcha" width="150">
|
||
<img src="https://cdn.wenanzhe.com/img/2a8r_79074e311d573d31e1630978fe04b990.jpg" alt="captcha" width="150">
|
||
<img src="https://cdn.wenanzhe.com/img/aftf_C2vHZlk8540y3qAmCM.bmp" alt="captcha" width="150">
|
||
<img src="https://cdn.wenanzhe.com/img/%E5%BE%AE%E4%BF%A1%E6%88%AA%E5%9B%BE_20211226144057.png" alt="captcha" width="150">
|
||
|
||
##### ii. 目标检测能力
|
||
|
||
主要用于快速检测出图像中可能的目标主体位置,由于被检测出的目标不一定为文字,所以本功能仅提供目标的bbox位置 **(在⽬标检测⾥,我们通常使⽤bbox(bounding box,缩写是 bbox)来描述⽬标位置。bbox是⼀个矩形框,可以由矩形左上⻆的 x 和 y 轴坐标与右下⻆的 x 和 y 轴坐标确定)**
|
||
|
||
如果使用过程中无需调用ocr功能,可以在初始化时通过传参`ocr=False`关闭ocr功能,开启目标检测需要传入参数`det=True`
|
||
|
||
```python
|
||
import ddddocr
|
||
import cv2
|
||
|
||
det = ddddocr.DdddOcr(det=True)
|
||
|
||
with open("test.jpg", 'rb') as f:
|
||
image = f.read()
|
||
|
||
bboxes = det.detection(image)
|
||
print(bboxes)
|
||
|
||
im = cv2.imread("test.jpg")
|
||
|
||
for bbox in bboxes:
|
||
x1, y1, x2, y2 = bbox
|
||
im = cv2.rectangle(im, (x1, y1), (x2, y2), color=(0, 0, 255), thickness=2)
|
||
|
||
cv2.imwrite("result.jpg", im)
|
||
|
||
```
|
||
|
||
|
||
|
||
**参考例图**
|
||
|
||
包括且不限于以下图片
|
||
|
||
<img src="https://cdn.wenanzhe.com/img/page1_1.jpg" alt="captcha" width="200">
|
||
<img src="https://cdn.wenanzhe.com/img/page1_2.jpg" alt="captcha" width="200">
|
||
<img src="https://cdn.wenanzhe.com/img/page1_3.jpg" alt="captcha" width="200">
|
||
<img src="https://cdn.wenanzhe.com/img/page1_4.jpg" alt="captcha" width="200">
|
||
<br />
|
||
<img src="https://cdn.wenanzhe.com/img/result.jpg" alt="captcha" width="200">
|
||
<img src="https://cdn.wenanzhe.com/img/result2.jpg" alt="captcha" width="200">
|
||
<img src="https://cdn.wenanzhe.com/img/result4.jpg" alt="captcha" width="200">
|
||
|
||
##### Ⅲ. 滑块检测
|
||
|
||
本项目的滑块检测功能并非AI识别实现,均为opencv内置算法实现。可能对于截图党用户没那么友好~,如果使用过程中无需调用ocr功能或目标检测功能,可以在初始化时通过传参`ocr=False`关闭ocr功能或`det=False`来关闭目标检测功能
|
||
|
||
本功能内置两套算法实现,适用于两种不同情况,具体请参考以下说明
|
||
|
||
**a.算法1**
|
||
|
||
算法1原理是通过滑块图像的边缘在背景图中计算找到相对应的坑位,可以分别获取到滑块图和背景图,滑块图为透明背景图
|
||
|
||
滑块图
|
||
|
||
<img src="https://cdn.wenanzhe.com/img/b.png" alt="captcha" width="50">
|
||
|
||
背景图
|
||
|
||
<img src="https://cdn.wenanzhe.com/img/a.png" alt="captcha" width="350">
|
||
|
||
```python
|
||
det = ddddocr.DdddOcr(det=False, ocr=False)
|
||
|
||
with open('target.png', 'rb') as f:
|
||
target_bytes = f.read()
|
||
|
||
with open('background.png', 'rb') as f:
|
||
background_bytes = f.read()
|
||
|
||
res = det.slide_match(target_bytes, background_bytes)
|
||
|
||
print(res)
|
||
```
|
||
由于滑块图可能存在透明边框的问题,导致计算结果不一定准确,需要自行估算滑块图透明边框的宽度用于修正得出的bbox
|
||
|
||
*提示:如果滑块无过多背景部分,则可以添加simple_target参数, 通常为jpg或者bmp格式的图片*
|
||
|
||
```python
|
||
slide = ddddocr.DdddOcr(det=False, ocr=False)
|
||
|
||
with open('target.jpg', 'rb') as f:
|
||
target_bytes = f.read()
|
||
|
||
with open('background.jpg', 'rb') as f:
|
||
background_bytes = f.read()
|
||
|
||
res = slide.slide_match(target_bytes, background_bytes, simple_target=True)
|
||
|
||
print(res)
|
||
```
|
||
|
||
**a.算法2**
|
||
|
||
算法2是通过比较两张图的不同之处进行判断滑块目标坑位的位置
|
||
|
||
参考图a,带有目标坑位阴影的全图
|
||
|
||
<img src="https://cdn.wenanzhe.com/img/bg.jpg" alt="captcha" width="350">
|
||
|
||
参考图b,全图
|
||
|
||
<img src="https://cdn.wenanzhe.com/img/fullpage.jpg" alt="captcha" width="350">
|
||
|
||
```python
|
||
slide = ddddocr.DdddOcr(det=False, ocr=False)
|
||
|
||
with open('bg.jpg', 'rb') as f:
|
||
target_bytes = f.read()
|
||
|
||
with open('fullpage.jpg', 'rb') as f:
|
||
background_bytes = f.read()
|
||
|
||
img = cv2.imread("bg.jpg")
|
||
|
||
res = slide.slide_comparison(target_bytes, background_bytes)
|
||
|
||
print(res)
|
||
```
|
||
|
||
##### Ⅳ. OCR概率输出
|
||
|
||
为了提供更灵活的ocr结果控制与范围限定,项目支持对ocr结果进行范围限定。
|
||
|
||
可以通过在调用`classification`方法的时候传参`probability=True`,此时`classification`方法将返回全字符表的概率
|
||
当然也可以通过`set_ranges`方法设置输出字符范围来限定返回的结果。
|
||
|
||
Ⅰ. `set_ranges` 方法限定返回字符返回
|
||
|
||
本方法接受1个参数,如果输入为int类型为内置的字符集限制,string类型则为自定义的字符集
|
||
|
||
如果为int类型,请参考下表
|
||
|
||
| 参数值 | 意义 |
|
||
|-----|-----------------------------------|
|
||
| 0 | 纯整数0-9 |
|
||
| 1 | 纯小写英文a-z |
|
||
| 2 | 纯大写英文A-Z |
|
||
| 3 | 小写英文a-z + 大写英文A-Z |
|
||
| 4 | 小写英文a-z + 整数0-9 |
|
||
| 5 | 大写英文A-Z + 整数0-9 |
|
||
| 6 | 小写英文a-z + 大写英文A-Z + 整数0-9 |
|
||
| 7 | 默认字符库 - 小写英文a-z - 大写英文A-Z - 整数0-9 |
|
||
|
||
如果为string类型请传入一段不包含空格的文本,其中的每个字符均为一个待选词
|
||
如:`"0123456789+-x/=""`
|
||
|
||
```python
|
||
import ddddocr
|
||
|
||
ocr = ddddocr.DdddOcr()
|
||
|
||
image = open("test.jpg", "rb").read()
|
||
ocr.set_ranges("0123456789+-x/=")
|
||
result = ocr.classification(image, probability=True)
|
||
s = ""
|
||
for i in result['probability']:
|
||
s += result['charsets'][i.index(max(i))]
|
||
|
||
print(s)
|
||
|
||
```
|
||
|
||
##### Ⅴ. 自定义OCR训练模型导入
|
||
|
||
本项目支持导入来自于 [dddd_trainer](https://github.com/sml2h3/dddd_trainer) 进行自定义训练后的模型,参考导入代码为
|
||
|
||
```python
|
||
import ddddocr
|
||
|
||
ocr = ddddocr.DdddOcr(det=False, ocr=False, import_onnx_path="myproject_0.984375_139_13000_2022-02-26-15-34-13.onnx", charsets_path="charsets.json")
|
||
|
||
with open('test.jpg', 'rb') as f:
|
||
image_bytes = f.read()
|
||
|
||
res = ocr.classification(image_bytes)
|
||
print(res)
|
||
|
||
```
|
||
|
||
### 版本控制
|
||
|
||
该项目使用Git进行版本管理。您可以在repository参看当前可用版本。
|
||
|
||
### 相关推荐文章or项目
|
||
|
||
[带带弟弟OCR,纯VBA本地获取网络验证码整体解决方案](https://club.excelhome.net/thread-1666823-1-1.html)
|
||
|
||
[ddddocr rust 版本](https://github.com/86maid/ddddocr)
|
||
|
||
[captcha-killer的修改版](https://github.com/f0ng/captcha-killer-modified)
|
||
|
||
[通过ddddocr训练字母数字验证码模型并识别部署调用](https://www.bilibili.com/video/BV1ez421C7dB)
|
||
|
||
...
|
||
|
||
欢迎更多优秀案例或教程等进行投稿,可直接新建issue标题以【投稿】开头,附上公开教程站点链接,我会选择根据文章内容选择相对不重复或者有重点内容等进行readme展示,感谢各位朋友~
|
||
|
||
### 作者
|
||
|
||
sml2h3@gamil.com
|
||
|
||
<img src="https://cdn.wenanzhe.com/img/mmqrcode1640418911274.png!/scale/50" alt="wechat" width="150">
|
||
|
||
*好友数过多不一定通过,有问题可以在issue进行交流*
|
||
|
||
### 版权说明
|
||
|
||
该项目签署了MIT 授权许可,详情请参阅 [LICENSE](https://github.com/sml2h3/ddddocr/blob/master/LICENSE)
|
||
|
||
### 捐赠 (如果项目有帮助到您,可以选择捐赠一些费用用于ddddocr的后续版本维护,本项目长期维护)
|
||
|
||
<img src="https://cdn.wenanzhe.com/img/zhifubao.jpg" alt="captcha" width="150">
|
||
<img src="https://cdn.wenanzhe.com/img/weixin.jpg" alt="captcha" width="150">
|
||
|
||
|
||
<!-- links -->
|
||
[your-project-path]:sml2h3/ddddocr
|
||
[contributors-shield]: https://img.shields.io/github/contributors/sml2h3/ddddocr?style=flat-square
|
||
[contributors-url]: https://github.com/shaojintian/Best_README_template/graphs/contributors
|
||
[forks-shield]: https://img.shields.io/github/forks/sml2h3/ddddocr?style=flat-square
|
||
[forks-url]: https://github.com/shaojintian/Best_README_template/network/members
|
||
[stars-shield]: https://img.shields.io/github/stars/sml2h3/ddddocr?style=flat-square
|
||
[stars-url]: https://github.com/shaojintian/Best_README_template/stargazers
|
||
[issues-shield]: https://img.shields.io/github/issues/sml2h3/ddddocr?style=flat-square
|
||
[issues-url]: https://img.shields.io/github/issues/sml2h3/ddddocr.svg
|
||
[license-shield]: https://img.shields.io/github/license/sml2h3/ddddocr?style=flat-square
|
||
[license-url]: https://github.com/sml2h3/ddddocr/blob/master/LICENSE
|
||
|
||
|
||
### Star 历史
|
||
|
||
[](https://star-history.com/#sml2h3/ddddocr&Date)
|
||
|
||
|