mirror of
https://github.com/sml2h3/ddddocr.git
synced 2025-05-16 16:59:32 +08:00
新增了两套滑块识别算法,新年快乐(想要红包)
This commit is contained in:
parent
584edd696e
commit
6b7f30452f
@ -3,7 +3,61 @@
|
||||
# 带带弟弟OCR通用验证码识别SDK免费开源版
|
||||
|
||||
# 今天ddddocr又更新啦!
|
||||
当前版本为1.3.1
|
||||
## 当前版本为1.4.0
|
||||
|
||||
# 1.4.0版本更新内容
|
||||
|
||||
本次更新新增了两种滑块识别算法,算法非深度神经网络实现,仅使用opencv和PIL完成。
|
||||
|
||||
## 算法1
|
||||
小滑块为单独的png图片,背景是透明图,如下图
|
||||
|
||||

|
||||
|
||||
然后背景为带小滑块坑位的,如下图
|
||||
|
||||

|
||||
|
||||
```python
|
||||
det = ddddocr.DdddOcr(det=False, ocr=False)
|
||||
|
||||
with open('target.png', 'rb') as f:
|
||||
target_bytes = f.read()
|
||||
|
||||
with open('background.png', 'rb') as f:
|
||||
background_bytes = f.read()
|
||||
|
||||
res = det.slide_match(target_bytes, background_bytes)
|
||||
|
||||
print(res)
|
||||
```
|
||||
## 算法2
|
||||
一张图为带坑位的原图,如下图
|
||||
|
||||

|
||||
|
||||
一张图为原图,如下图
|
||||
|
||||

|
||||
|
||||
```python
|
||||
det = ddddocr.DdddOcr(det=False, ocr=False)
|
||||
|
||||
with open('bg.jpg', 'rb') as f:
|
||||
target_bytes = f.read()
|
||||
|
||||
with open('fullpage.jpg', 'rb') as f:
|
||||
background_bytes = f.read()
|
||||
|
||||
img = cv2.imread("bg.jpg")
|
||||
|
||||
res = det.slide_comparison(target_bytes, background_bytes)
|
||||
|
||||
print(res)
|
||||
```
|
||||
|
||||
|
||||
# 1.3.1版本更新内容
|
||||
|
||||
想必很多做验证码的新手,一定头疼碰到点选类型的图像,做样本费时费力,神经网络不会写,训练设备太昂贵,模型效果又不好。
|
||||
|
||||
@ -133,6 +187,12 @@ cv2.imwrite("result.jpg", im)
|
||||
|
||||
以上命令将自动安装符合自己电脑环境的最新ddddocr
|
||||
|
||||
## 拓展 一键部署ddddocr api,支持docker部署
|
||||
|
||||
[github](https://github.com/sml2h3/ocr_api_server)
|
||||
|
||||
[gitee](https://gitee.com/fkgeek/ocr_api_server)
|
||||
|
||||
# 交流群 (加我好友拉你进群)
|
||||
|
||||

|
||||
|
Loading…
Reference in New Issue
Block a user