mirror of
https://github.com/alibaba/DataX.git
synced 2025-05-02 04:59:51 +08:00
Merge branch 'master' into featureFor1780
# Conflicts: # pom.xml
This commit is contained in:
commit
dbbb4f0789
10
README.md
10
README.md
@ -56,7 +56,8 @@ DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、N
|
||||
| | AnalyticDB For PostgreSQL | | √ | 写 |
|
||||
| 阿里云中间件 | datahub | √ | √ | 读 、写 |
|
||||
| | SLS | √ | √ | 读 、写 |
|
||||
| 阿里云图数据库 | GDB | √ | √ | [读](https://github.com/alibaba/DataX/blob/master/gdbreader/doc/gdbreader.md) 、[写](https://github.com/alibaba/DataX/blob/master/gdbwriter/doc/gdbwriter.md) |
|
||||
| 图数据库 | 阿里云 GDB | √ | √ | [读](https://github.com/alibaba/DataX/blob/master/gdbreader/doc/gdbreader.md) 、[写](https://github.com/alibaba/DataX/blob/master/gdbwriter/doc/gdbwriter.md) |
|
||||
| | Neo4j | | √ | [写](https://github.com/alibaba/DataX/blob/master/neo4jwriter/doc/neo4jwriter.md) |
|
||||
| NoSQL数据存储 | OTS | √ | √ | [读](https://github.com/alibaba/DataX/blob/master/otsreader/doc/otsreader.md) 、[写](https://github.com/alibaba/DataX/blob/master/otswriter/doc/otswriter.md) |
|
||||
| | Hbase0.94 | √ | √ | [读](https://github.com/alibaba/DataX/blob/master/hbase094xreader/doc/hbase094xreader.md) 、[写](https://github.com/alibaba/DataX/blob/master/hbase094xwriter/doc/hbase094xwriter.md) |
|
||||
| | Hbase1.1 | √ | √ | [读](https://github.com/alibaba/DataX/blob/master/hbase11xreader/doc/hbase11xreader.md) 、[写](https://github.com/alibaba/DataX/blob/master/hbase11xwriter/doc/hbase11xwriter.md) |
|
||||
@ -66,7 +67,7 @@ DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、N
|
||||
| | Cassandra | √ | √ | [读](https://github.com/alibaba/DataX/blob/master/cassandrareader/doc/cassandrareader.md) 、[写](https://github.com/alibaba/DataX/blob/master/cassandrawriter/doc/cassandrawriter.md) |
|
||||
| 数仓数据存储 | StarRocks | √ | √ | 读 、[写](https://github.com/alibaba/DataX/blob/master/starrockswriter/doc/starrockswriter.md) |
|
||||
| | ApacheDoris | | √ | [写](https://github.com/alibaba/DataX/blob/master/doriswriter/doc/doriswriter.md) |
|
||||
| | ClickHouse | | √ | 写 |
|
||||
| | ClickHouse | √ | √ | [读](https://github.com/alibaba/DataX/blob/master/clickhousereader/doc/clickhousereader.md) 、[写](https://github.com/alibaba/DataX/blob/master/clickhousewriter/doc/clickhousewriter.md) |
|
||||
| | Databend | | √ | [写](https://github.com/alibaba/DataX/blob/master/databendwriter/doc/databendwriter.md) |
|
||||
| | Hive | √ | √ | [读](https://github.com/alibaba/DataX/blob/master/hdfsreader/doc/hdfsreader.md) 、[写](https://github.com/alibaba/DataX/blob/master/hdfswriter/doc/hdfswriter.md) |
|
||||
| | kudu | | √ | [写](https://github.com/alibaba/DataX/blob/master/hdfswriter/doc/hdfswriter.md) |
|
||||
@ -108,6 +109,11 @@ DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、N
|
||||
# 重要版本更新说明
|
||||
|
||||
DataX 后续计划月度迭代更新,也欢迎感兴趣的同学提交 Pull requests,月度更新内容会介绍介绍如下。
|
||||
- [datax_v202306](https://github.com/alibaba/DataX/releases/tag/datax_v202306)
|
||||
- 精简代码
|
||||
- 新增插件(neo4jwriter、clickhousewriter)
|
||||
- 优化插件、修复问题(oceanbase、hdfs、databend、txtfile)
|
||||
|
||||
|
||||
- [datax_v202303](https://github.com/alibaba/DataX/releases/tag/datax_v202303)
|
||||
- 精简代码
|
||||
|
344
clickhousereader/doc/clickhousereader.md
Normal file
344
clickhousereader/doc/clickhousereader.md
Normal file
@ -0,0 +1,344 @@
|
||||
|
||||
# ClickhouseReader 插件文档
|
||||
|
||||
|
||||
___
|
||||
|
||||
|
||||
## 1 快速介绍
|
||||
|
||||
ClickhouseReader插件实现了从Clickhouse读取数据。在底层实现上,ClickhouseReader通过JDBC连接远程Clickhouse数据库,并执行相应的sql语句将数据从Clickhouse库中SELECT出来。
|
||||
|
||||
## 2 实现原理
|
||||
|
||||
简而言之,ClickhouseReader通过JDBC连接器连接到远程的Clickhouse数据库,并根据用户配置的信息生成查询SELECT SQL语句并发送到远程Clickhouse数据库,并将该SQL执行返回结果使用DataX自定义的数据类型拼装为抽象的数据集,并传递给下游Writer处理。
|
||||
|
||||
对于用户配置Table、Column、Where的信息,ClickhouseReader将其拼接为SQL语句发送到Clickhouse数据库;对于用户配置querySql信息,Clickhouse直接将其发送到Clickhouse数据库。
|
||||
|
||||
|
||||
## 3 功能说明
|
||||
|
||||
### 3.1 配置样例
|
||||
|
||||
* 配置一个从Clickhouse数据库同步抽取数据到本地的作业:
|
||||
|
||||
```
|
||||
{
|
||||
"job": {
|
||||
"setting": {
|
||||
"speed": {
|
||||
//设置传输速度 byte/s 尽量逼近这个速度但是不高于它.
|
||||
// channel 表示通道数量,byte表示通道速度,如果单通道速度1MB,配置byte为1048576表示一个channel
|
||||
"byte": 1048576
|
||||
},
|
||||
//出错限制
|
||||
"errorLimit": {
|
||||
//先选择record
|
||||
"record": 0,
|
||||
//百分比 1表示100%
|
||||
"percentage": 0.02
|
||||
}
|
||||
},
|
||||
"content": [
|
||||
{
|
||||
"reader": {
|
||||
"name": "clickhousereader",
|
||||
"parameter": {
|
||||
// 数据库连接用户名
|
||||
"username": "root",
|
||||
// 数据库连接密码
|
||||
"password": "root",
|
||||
"column": [
|
||||
"id","name"
|
||||
],
|
||||
"connection": [
|
||||
{
|
||||
"table": [
|
||||
"table"
|
||||
],
|
||||
"jdbcUrl": [
|
||||
"jdbc:clickhouse://[HOST_NAME]:PORT/[DATABASE_NAME]"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"writer": {
|
||||
//writer类型
|
||||
"name": "streamwriter",
|
||||
// 是否打印内容
|
||||
"parameter": {
|
||||
"print": true
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
* 配置一个自定义SQL的数据库同步任务到本地内容的作业:
|
||||
|
||||
```
|
||||
{
|
||||
"job": {
|
||||
"setting": {
|
||||
"speed": {
|
||||
"channel": 5
|
||||
}
|
||||
},
|
||||
"content": [
|
||||
{
|
||||
"reader": {
|
||||
"name": "clickhousereader",
|
||||
"parameter": {
|
||||
"username": "root",
|
||||
"password": "root",
|
||||
"where": "",
|
||||
"connection": [
|
||||
{
|
||||
"querySql": [
|
||||
"select db_id,on_line_flag from db_info where db_id < 10"
|
||||
],
|
||||
"jdbcUrl": [
|
||||
"jdbc:clickhouse://1.1.1.1:8123/default"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"writer": {
|
||||
"name": "streamwriter",
|
||||
"parameter": {
|
||||
"visible": false,
|
||||
"encoding": "UTF-8"
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### 3.2 参数说明
|
||||
|
||||
* **jdbcUrl**
|
||||
|
||||
* 描述:描述的是到对端数据库的JDBC连接信息,使用JSON的数组描述,并支持一个库填写多个连接地址。之所以使用JSON数组描述连接信息,是因为阿里集团内部支持多个IP探测,如果配置了多个,ClickhouseReader可以依次探测ip的可连接性,直到选择一个合法的IP。如果全部连接失败,ClickhouseReader报错。 注意,jdbcUrl必须包含在connection配置单元中。对于阿里集团外部使用情况,JSON数组填写一个JDBC连接即可。
|
||||
|
||||
jdbcUrl按照Clickhouse官方规范,并可以填写连接附件控制信息。具体请参看[Clickhouse官方文档](https://clickhouse.com/docs/en/engines/table-engines/integrations/jdbc)。
|
||||
|
||||
* 必选:是 <br />
|
||||
|
||||
* 默认值:无 <br />
|
||||
|
||||
* **username**
|
||||
|
||||
* 描述:数据源的用户名 <br />
|
||||
|
||||
* 必选:是 <br />
|
||||
|
||||
* 默认值:无 <br />
|
||||
|
||||
* **password**
|
||||
|
||||
* 描述:数据源指定用户名的密码 <br />
|
||||
|
||||
* 必选:是 <br />
|
||||
|
||||
* 默认值:无 <br />
|
||||
|
||||
* **table**
|
||||
|
||||
* 描述:所选取的需要同步的表。使用JSON的数组描述,因此支持多张表同时抽取。当配置为多张表时,用户自己需保证多张表是同一schema结构,ClickhouseReader不予检查表是否同一逻辑表。注意,table必须包含在connection配置单元中。<br />
|
||||
|
||||
* 必选:是 <br />
|
||||
|
||||
* 默认值:无 <br />
|
||||
|
||||
* **column**
|
||||
|
||||
* 描述:所配置的表中需要同步的列名集合,使用JSON的数组描述字段信息。用户使用\*代表默认使用所有列配置,例如['\*']。
|
||||
|
||||
支持列裁剪,即列可以挑选部分列进行导出。
|
||||
|
||||
支持列换序,即列可以不按照表schema信息进行导出。
|
||||
|
||||
支持常量配置,用户需要按照JSON格式:
|
||||
["id", "`table`", "1", "'bazhen.csy'", "null", "to_char(a + 1)", "2.3" , "true"]
|
||||
id为普通列名,\`table\`为包含保留在的列名,1为整形数字常量,'bazhen.csy'为字符串常量,null为空指针,to_char(a + 1)为表达式,2.3为浮点数,true为布尔值。
|
||||
|
||||
Column必须显示填写,不允许为空!
|
||||
|
||||
* 必选:是 <br />
|
||||
|
||||
* 默认值:无 <br />
|
||||
|
||||
* **splitPk**
|
||||
|
||||
* 描述:ClickhouseReader进行数据抽取时,如果指定splitPk,表示用户希望使用splitPk代表的字段进行数据分片,DataX因此会启动并发任务进行数据同步,这样可以大大提供数据同步的效能。
|
||||
|
||||
推荐splitPk用户使用表主键,因为表主键通常情况下比较均匀,因此切分出来的分片也不容易出现数据热点。
|
||||
|
||||
目前splitPk仅支持整形数据切分,`不支持浮点、日期等其他类型`。如果用户指定其他非支持类型,ClickhouseReader将报错!
|
||||
|
||||
splitPk如果不填写,将视作用户不对单表进行切分,ClickhouseReader使用单通道同步全量数据。
|
||||
|
||||
* 必选:否 <br />
|
||||
|
||||
* 默认值:无 <br />
|
||||
|
||||
* **where**
|
||||
|
||||
* 描述:筛选条件,MysqlReader根据指定的column、table、where条件拼接SQL,并根据这个SQL进行数据抽取。在实际业务场景中,往往会选择当天的数据进行同步,可以将where条件指定为gmt_create > $bizdate 。注意:不可以将where条件指定为limit 10,limit不是SQL的合法where子句。<br />
|
||||
|
||||
where条件可以有效地进行业务增量同步。
|
||||
|
||||
* 必选:否 <br />
|
||||
|
||||
* 默认值:无 <br />
|
||||
|
||||
* **querySql**
|
||||
|
||||
* 描述:在有些业务场景下,where这一配置项不足以描述所筛选的条件,用户可以通过该配置型来自定义筛选SQL。当用户配置了这一项之后,DataX系统就会忽略table,column这些配置型,直接使用这个配置项的内容对数据进行筛选,例如需要进行多表join后同步数据,使用select a,b from table_a join table_b on table_a.id = table_b.id <br />
|
||||
|
||||
`当用户配置querySql时,ClickhouseReader直接忽略table、column、where条件的配置`。
|
||||
|
||||
* 必选:否 <br />
|
||||
|
||||
* 默认值:无 <br />
|
||||
|
||||
* **fetchSize**
|
||||
|
||||
* 描述:该配置项定义了插件和数据库服务器端每次批量数据获取条数,该值决定了DataX和服务器端的网络交互次数,能够较大的提升数据抽取性能。<br />
|
||||
|
||||
`注意,该值过大(>2048)可能造成DataX进程OOM。`。
|
||||
|
||||
* 必选:否 <br />
|
||||
|
||||
* 默认值:1024 <br />
|
||||
|
||||
* **session**
|
||||
|
||||
* 描述:控制写入数据的时间格式,时区等的配置,如果表中有时间字段,配置该值以明确告知写入 clickhouse 的时间格式。通常配置的参数为:NLS_DATE_FORMAT,NLS_TIME_FORMAT。其配置的值为 json 格式,例如:
|
||||
```
|
||||
"session": [
|
||||
"alter session set NLS_DATE_FORMAT='yyyy-mm-dd hh24:mi:ss'",
|
||||
"alter session set NLS_TIMESTAMP_FORMAT='yyyy-mm-dd hh24:mi:ss'",
|
||||
"alter session set NLS_TIMESTAMP_TZ_FORMAT='yyyy-mm-dd hh24:mi:ss'",
|
||||
"alter session set TIME_ZONE='US/Pacific'"
|
||||
]
|
||||
```
|
||||
`(注意"是 " 的转义字符串)`。
|
||||
|
||||
* 必选:否 <br />
|
||||
|
||||
* 默认值:无 <br />
|
||||
|
||||
|
||||
### 3.3 类型转换
|
||||
|
||||
目前ClickhouseReader支持大部分Clickhouse类型,但也存在部分个别类型没有支持的情况,请注意检查你的类型。
|
||||
|
||||
下面列出ClickhouseReader针对Clickhouse类型转换列表:
|
||||
|
||||
|
||||
| DataX 内部类型| Clickhouse 数据类型 |
|
||||
| -------- |--------------------------------------------------------------------------------------------|
|
||||
| Long | UInt8, UInt16, UInt32, UInt64, UInt128, UInt256, Int8, Int16, Int32, Int64, Int128, Int256 |
|
||||
| Double | Float32, Float64, Decimal |
|
||||
| String | String, FixedString |
|
||||
| Date | DATE, Date32, DateTime, DateTime64 |
|
||||
| Boolean | Boolean |
|
||||
| Bytes | BLOB,BFILE,RAW,LONG RAW |
|
||||
|
||||
|
||||
|
||||
请注意:
|
||||
|
||||
* `除上述罗列字段类型外,其他类型均不支持`。
|
||||
|
||||
|
||||
## 4 性能报告
|
||||
|
||||
### 4.1 环境准备
|
||||
|
||||
#### 4.1.1 数据特征
|
||||
|
||||
为了模拟线上真实数据,我们设计两个Clickhouse数据表,分别为:
|
||||
|
||||
#### 4.1.2 机器参数
|
||||
|
||||
* 执行DataX的机器参数为:
|
||||
|
||||
* Clickhouse数据库机器参数为:
|
||||
|
||||
### 4.2 测试报告
|
||||
|
||||
#### 4.2.1 表1测试报告
|
||||
|
||||
|
||||
| 并发任务数| DataX速度(Rec/s)|DataX流量|网卡流量|DataX运行负载|DB运行负载|
|
||||
|--------| --------|--------|--------|--------|--------|
|
||||
|1| DataX 统计速度(Rec/s)|DataX统计流量|网卡流量|DataX运行负载|DB运行负载|
|
||||
|
||||
## 5 约束限制
|
||||
|
||||
### 5.1 主备同步数据恢复问题
|
||||
|
||||
主备同步问题指Clickhouse使用主从灾备,备库从主库不间断通过binlog恢复数据。由于主备数据同步存在一定的时间差,特别在于某些特定情况,例如网络延迟等问题,导致备库同步恢复的数据与主库有较大差别,导致从备库同步的数据不是一份当前时间的完整镜像。
|
||||
|
||||
针对这个问题,我们提供了preSql功能,该功能待补充。
|
||||
|
||||
### 5.2 一致性约束
|
||||
|
||||
Clickhouse在数据存储划分中属于RDBMS系统,对外可以提供强一致性数据查询接口。例如当一次同步任务启动运行过程中,当该库存在其他数据写入方写入数据时,ClickhouseReader完全不会获取到写入更新数据,这是由于数据库本身的快照特性决定的。关于数据库快照特性,请参看[MVCC Wikipedia](https://en.wikipedia.org/wiki/Multiversion_concurrency_control)
|
||||
|
||||
上述是在ClickhouseReader单线程模型下数据同步一致性的特性,由于ClickhouseReader可以根据用户配置信息使用了并发数据抽取,因此不能严格保证数据一致性:当ClickhouseReader根据splitPk进行数据切分后,会先后启动多个并发任务完成数据同步。由于多个并发任务相互之间不属于同一个读事务,同时多个并发任务存在时间间隔。因此这份数据并不是`完整的`、`一致的`数据快照信息。
|
||||
|
||||
针对多线程的一致性快照需求,在技术上目前无法实现,只能从工程角度解决,工程化的方式存在取舍,我们提供几个解决思路给用户,用户可以自行选择:
|
||||
|
||||
1. 使用单线程同步,即不再进行数据切片。缺点是速度比较慢,但是能够很好保证一致性。
|
||||
|
||||
2. 关闭其他数据写入方,保证当前数据为静态数据,例如,锁表、关闭备库同步等等。缺点是可能影响在线业务。
|
||||
|
||||
### 5.3 数据库编码问题
|
||||
|
||||
|
||||
ClickhouseReader底层使用JDBC进行数据抽取,JDBC天然适配各类编码,并在底层进行了编码转换。因此ClickhouseReader不需用户指定编码,可以自动获取编码并转码。
|
||||
|
||||
对于Clickhouse底层写入编码和其设定的编码不一致的混乱情况,ClickhouseReader对此无法识别,对此也无法提供解决方案,对于这类情况,`导出有可能为乱码`。
|
||||
|
||||
### 5.4 增量数据同步
|
||||
|
||||
ClickhouseReader使用JDBC SELECT语句完成数据抽取工作,因此可以使用SELECT...WHERE...进行增量数据抽取,方式有多种:
|
||||
|
||||
* 数据库在线应用写入数据库时,填充modify字段为更改时间戳,包括新增、更新、删除(逻辑删)。对于这类应用,ClickhouseReader只需要WHERE条件跟上一同步阶段时间戳即可。
|
||||
* 对于新增流水型数据,ClickhouseReader可以WHERE条件后跟上一阶段最大自增ID即可。
|
||||
|
||||
对于业务上无字段区分新增、修改数据情况,ClickhouseReader也无法进行增量数据同步,只能同步全量数据。
|
||||
|
||||
### 5.5 Sql安全性
|
||||
|
||||
ClickhouseReader提供querySql语句交给用户自己实现SELECT抽取语句,ClickhouseReader本身对querySql不做任何安全性校验。这块交由DataX用户方自己保证。
|
||||
|
||||
## 6 FAQ
|
||||
|
||||
***
|
||||
|
||||
**Q: ClickhouseReader同步报错,报错信息为XXX**
|
||||
|
||||
A: 网络或者权限问题,请使用Clickhouse命令行测试
|
||||
|
||||
|
||||
如果上述命令也报错,那可以证实是环境问题,请联系你的DBA。
|
||||
|
||||
|
||||
**Q: ClickhouseReader抽取速度很慢怎么办?**
|
||||
|
||||
A: 影响抽取时间的原因大概有如下几个:(来自专业 DBA 卫绾)
|
||||
1. 由于SQL的plan异常,导致的抽取时间长; 在抽取时,尽可能使用全表扫描代替索引扫描;
|
||||
2. 合理sql的并发度,减少抽取时间;
|
||||
3. 抽取sql要简单,尽量不用replace等函数,这个非常消耗cpu,会严重影响抽取速度;
|
91
clickhousereader/pom.xml
Normal file
91
clickhousereader/pom.xml
Normal file
@ -0,0 +1,91 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project xmlns="http://maven.apache.org/POM/4.0.0"
|
||||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
|
||||
<parent>
|
||||
<artifactId>datax-all</artifactId>
|
||||
<groupId>com.alibaba.datax</groupId>
|
||||
<version>0.0.1-SNAPSHOT</version>
|
||||
</parent>
|
||||
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
<artifactId>clickhousereader</artifactId>
|
||||
<name>clickhousereader</name>
|
||||
<packaging>jar</packaging>
|
||||
|
||||
<dependencies>
|
||||
<dependency>
|
||||
<groupId>ru.yandex.clickhouse</groupId>
|
||||
<artifactId>clickhouse-jdbc</artifactId>
|
||||
<version>0.2.4</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>com.alibaba.datax</groupId>
|
||||
<artifactId>datax-core</artifactId>
|
||||
<version>${datax-project-version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>com.alibaba.datax</groupId>
|
||||
<artifactId>datax-common</artifactId>
|
||||
<version>${datax-project-version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.slf4j</groupId>
|
||||
<artifactId>slf4j-api</artifactId>
|
||||
</dependency>
|
||||
|
||||
<dependency>
|
||||
<groupId>ch.qos.logback</groupId>
|
||||
<artifactId>logback-classic</artifactId>
|
||||
</dependency>
|
||||
|
||||
<dependency>
|
||||
<groupId>com.alibaba.datax</groupId>
|
||||
<artifactId>plugin-rdbms-util</artifactId>
|
||||
<version>${datax-project-version}</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
<build>
|
||||
<resources>
|
||||
<resource>
|
||||
<directory>src/main/java</directory>
|
||||
<includes>
|
||||
<include>**/*.properties</include>
|
||||
</includes>
|
||||
</resource>
|
||||
</resources>
|
||||
<plugins>
|
||||
<!-- compiler plugin -->
|
||||
<plugin>
|
||||
<artifactId>maven-compiler-plugin</artifactId>
|
||||
<configuration>
|
||||
<source>${jdk-version}</source>
|
||||
<target>${jdk-version}</target>
|
||||
<encoding>${project-sourceEncoding}</encoding>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<!-- assembly plugin -->
|
||||
<plugin>
|
||||
<artifactId>maven-assembly-plugin</artifactId>
|
||||
<configuration>
|
||||
<descriptors>
|
||||
<descriptor>src/main/assembly/package.xml</descriptor>
|
||||
</descriptors>
|
||||
<finalName>datax</finalName>
|
||||
</configuration>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>dwzip</id>
|
||||
<phase>package</phase>
|
||||
<goals>
|
||||
<goal>single</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</build>
|
||||
|
||||
|
||||
</project>
|
35
clickhousereader/src/main/assembly/package.xml
Normal file
35
clickhousereader/src/main/assembly/package.xml
Normal file
@ -0,0 +1,35 @@
|
||||
<assembly
|
||||
xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0"
|
||||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0 http://maven.apache.org/xsd/assembly-1.1.0.xsd">
|
||||
<id>datax</id>
|
||||
<formats>
|
||||
<format>dir</format>
|
||||
</formats>
|
||||
<includeBaseDirectory>false</includeBaseDirectory>
|
||||
<fileSets>
|
||||
<fileSet>
|
||||
<directory>src/main/resources</directory>
|
||||
<includes>
|
||||
<include>plugin.json</include>
|
||||
<include>plugin_job_template.json</include>
|
||||
</includes>
|
||||
<outputDirectory>plugin/reader/clickhousereader</outputDirectory>
|
||||
</fileSet>
|
||||
<fileSet>
|
||||
<directory>target/</directory>
|
||||
<includes>
|
||||
<include>clickhousereader-0.0.1-SNAPSHOT.jar</include>
|
||||
</includes>
|
||||
<outputDirectory>plugin/reader/clickhousereader</outputDirectory>
|
||||
</fileSet>
|
||||
</fileSets>
|
||||
|
||||
<dependencySets>
|
||||
<dependencySet>
|
||||
<useProjectArtifact>false</useProjectArtifact>
|
||||
<outputDirectory>plugin/reader/clickhousereader/libs</outputDirectory>
|
||||
<scope>runtime</scope>
|
||||
</dependencySet>
|
||||
</dependencySets>
|
||||
</assembly>
|
@ -0,0 +1,87 @@
|
||||
package com.alibaba.datax.plugin.reader.clickhousereader;
|
||||
|
||||
import java.sql.Array;
|
||||
import java.sql.ResultSet;
|
||||
import java.sql.ResultSetMetaData;
|
||||
import java.sql.SQLException;
|
||||
import java.sql.Types;
|
||||
import java.util.List;
|
||||
|
||||
import com.alibaba.datax.common.element.Record;
|
||||
import com.alibaba.datax.common.element.StringColumn;
|
||||
import com.alibaba.datax.common.plugin.RecordSender;
|
||||
import com.alibaba.datax.common.plugin.TaskPluginCollector;
|
||||
import com.alibaba.datax.common.spi.Reader;
|
||||
import com.alibaba.datax.common.util.Configuration;
|
||||
import com.alibaba.datax.common.util.MessageSource;
|
||||
import com.alibaba.datax.plugin.rdbms.reader.CommonRdbmsReader;
|
||||
import com.alibaba.datax.plugin.rdbms.util.DataBaseType;
|
||||
import com.alibaba.fastjson2.JSON;
|
||||
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
public class ClickhouseReader extends Reader {
|
||||
|
||||
private static final DataBaseType DATABASE_TYPE = DataBaseType.ClickHouse;
|
||||
private static final Logger LOG = LoggerFactory.getLogger(ClickhouseReader.class);
|
||||
|
||||
public static class Job extends Reader.Job {
|
||||
private static MessageSource MESSAGE_SOURCE = MessageSource.loadResourceBundle(ClickhouseReader.class);
|
||||
|
||||
private Configuration jobConfig = null;
|
||||
private CommonRdbmsReader.Job commonRdbmsReaderMaster;
|
||||
|
||||
@Override
|
||||
public void init() {
|
||||
this.jobConfig = super.getPluginJobConf();
|
||||
this.commonRdbmsReaderMaster = new CommonRdbmsReader.Job(DATABASE_TYPE);
|
||||
this.commonRdbmsReaderMaster.init(this.jobConfig);
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<Configuration> split(int mandatoryNumber) {
|
||||
return this.commonRdbmsReaderMaster.split(this.jobConfig, mandatoryNumber);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void post() {
|
||||
this.commonRdbmsReaderMaster.post(this.jobConfig);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void destroy() {
|
||||
this.commonRdbmsReaderMaster.destroy(this.jobConfig);
|
||||
}
|
||||
}
|
||||
|
||||
public static class Task extends Reader.Task {
|
||||
|
||||
private Configuration jobConfig;
|
||||
private CommonRdbmsReader.Task commonRdbmsReaderSlave;
|
||||
|
||||
@Override
|
||||
public void init() {
|
||||
this.jobConfig = super.getPluginJobConf();
|
||||
this.commonRdbmsReaderSlave = new CommonRdbmsReader.Task(DATABASE_TYPE, super.getTaskGroupId(), super.getTaskId());
|
||||
this.commonRdbmsReaderSlave.init(this.jobConfig);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void startRead(RecordSender recordSender) {
|
||||
int fetchSize = this.jobConfig.getInt(com.alibaba.datax.plugin.rdbms.reader.Constant.FETCH_SIZE, 1000);
|
||||
|
||||
this.commonRdbmsReaderSlave.startRead(this.jobConfig, recordSender, super.getTaskPluginCollector(), fetchSize);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void post() {
|
||||
this.commonRdbmsReaderSlave.post(this.jobConfig);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void destroy() {
|
||||
this.commonRdbmsReaderSlave.destroy(this.jobConfig);
|
||||
}
|
||||
}
|
||||
}
|
6
clickhousereader/src/main/resources/plugin.json
Normal file
6
clickhousereader/src/main/resources/plugin.json
Normal file
@ -0,0 +1,6 @@
|
||||
{
|
||||
"name": "clickhousereader",
|
||||
"class": "com.alibaba.datax.plugin.reader.clickhousereader.ClickhouseReader",
|
||||
"description": "useScene: prod. mechanism: Jdbc connection using the database, execute select sql.",
|
||||
"developer": "alibaba"
|
||||
}
|
16
clickhousereader/src/main/resources/plugin_job_template.json
Normal file
16
clickhousereader/src/main/resources/plugin_job_template.json
Normal file
@ -0,0 +1,16 @@
|
||||
{
|
||||
"name": "clickhousereader",
|
||||
"parameter": {
|
||||
"username": "username",
|
||||
"password": "password",
|
||||
"column": ["col1", "col2", "col3"],
|
||||
"connection": [
|
||||
{
|
||||
"jdbcUrl": "jdbc:clickhouse://<host>:<port>[/<database>]",
|
||||
"table": ["table1", "table2"]
|
||||
}
|
||||
],
|
||||
"preSql": [],
|
||||
"postSql": []
|
||||
}
|
||||
}
|
@ -0,0 +1,74 @@
|
||||
package com.alibaba.datax.plugin.reader.clickhousereader;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.FileNotFoundException;
|
||||
import java.io.FileOutputStream;
|
||||
import java.io.OutputStream;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import com.alibaba.datax.common.element.Column;
|
||||
import com.alibaba.datax.common.element.Record;
|
||||
import com.alibaba.datax.common.util.Configuration;
|
||||
import com.alibaba.datax.dataxservice.face.eventcenter.EventLogStore;
|
||||
import com.alibaba.datax.dataxservice.face.eventcenter.RuntimeContext;
|
||||
import com.alibaba.datax.test.simulator.BasicReaderPluginTest;
|
||||
import com.alibaba.datax.test.simulator.junit.extend.log.LoggedRunner;
|
||||
import com.alibaba.datax.test.simulator.junit.extend.log.TestLogger;
|
||||
import com.alibaba.fastjson.JSON;
|
||||
|
||||
import org.apache.commons.lang3.ArrayUtils;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Ignore;
|
||||
import org.junit.Test;
|
||||
import org.junit.runner.RunWith;
|
||||
|
||||
|
||||
@RunWith(LoggedRunner.class)
|
||||
@Ignore
|
||||
public class ClickhouseReaderTest extends BasicReaderPluginTest {
|
||||
@TestLogger(log = "测试basic1.json. 配置常量.")
|
||||
@Test
|
||||
public void testBasic1() {
|
||||
RuntimeContext.setGlobalJobId(-1);
|
||||
EventLogStore.init();
|
||||
List<Record> noteRecordForTest = new ArrayList<Record>();
|
||||
|
||||
List<Configuration> subjobs = super.doReaderTest("basic1.json", 1, noteRecordForTest);
|
||||
|
||||
Assert.assertEquals(1, subjobs.size());
|
||||
Assert.assertEquals(1, noteRecordForTest.size());
|
||||
|
||||
Assert.assertEquals("[8,16,32,64,-8,-16,-32,-64,\"3.2\",\"6.4\",1,\"str_col\",\"abc\"," + "\"417ddc5d-e556-4d27-95dd-a34d84e46a50\",1580745600000,1580752800000,\"hello\",\"[1,2,3]\"," + "\"[\\\"abc\\\",\\\"cde\\\"]\",\"(8,'uint8_type')\",null,\"[1,2]\",\"[\\\"x\\\",\\\"y\\\"]\",\"127.0.0.1\",\"::\",\"23.345\"]", JSON.toJSONString(listData(noteRecordForTest.get(0))));
|
||||
}
|
||||
|
||||
@Override
|
||||
protected OutputStream buildDataOutput(String optionalOutputName) {
|
||||
File f = new File(optionalOutputName + "-output.txt");
|
||||
try {
|
||||
return new FileOutputStream(f);
|
||||
} catch (FileNotFoundException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getTestPluginName() {
|
||||
return "clickhousereader";
|
||||
}
|
||||
|
||||
private Object[] listData(Record record) {
|
||||
if (null == record) {
|
||||
return ArrayUtils.EMPTY_OBJECT_ARRAY;
|
||||
}
|
||||
Object[] arr = new Object[record.getColumnNumber()];
|
||||
for (int i = 0; i < arr.length; i++) {
|
||||
Column col = record.getColumn(i);
|
||||
if (null != col) {
|
||||
arr[i] = col.getRawData();
|
||||
}
|
||||
}
|
||||
return arr;
|
||||
}
|
||||
}
|
57
clickhousereader/src/test/resources/basic1.json
Executable file
57
clickhousereader/src/test/resources/basic1.json
Executable file
@ -0,0 +1,57 @@
|
||||
{
|
||||
"job": {
|
||||
"setting": {
|
||||
"speed": {
|
||||
"channel": 5
|
||||
}
|
||||
},
|
||||
"content": [
|
||||
{
|
||||
"reader": {
|
||||
"name": "clickhousereader",
|
||||
"parameter": {
|
||||
"username": "XXXX",
|
||||
"password": "XXXX",
|
||||
"column": [
|
||||
"uint8_col",
|
||||
"uint16_col",
|
||||
"uint32_col",
|
||||
"uint64_col",
|
||||
"int8_col",
|
||||
"int16_col",
|
||||
"int32_col",
|
||||
"int64_col",
|
||||
"float32_col",
|
||||
"float64_col",
|
||||
"bool_col",
|
||||
"str_col",
|
||||
"fixedstr_col",
|
||||
"uuid_col",
|
||||
"date_col",
|
||||
"datetime_col",
|
||||
"enum_col",
|
||||
"ary_uint8_col",
|
||||
"ary_str_col",
|
||||
"tuple_col",
|
||||
"nullable_col",
|
||||
"nested_col.nested_id",
|
||||
"nested_col.nested_str",
|
||||
"ipv4_col",
|
||||
"ipv6_col",
|
||||
"decimal_col"
|
||||
],
|
||||
"connection": [
|
||||
{
|
||||
"table": [
|
||||
"all_type_tbl"
|
||||
],
|
||||
"jdbcUrl":["jdbc:clickhouse://XXXX:8123/default"]
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"writer": {}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
34
clickhousereader/src/test/resources/basic1.sql
Normal file
34
clickhousereader/src/test/resources/basic1.sql
Normal file
@ -0,0 +1,34 @@
|
||||
CREATE TABLE IF NOT EXISTS default.all_type_tbl
|
||||
(
|
||||
`uint8_col` UInt8,
|
||||
`uint16_col` UInt16,
|
||||
uint32_col UInt32,
|
||||
uint64_col UInt64,
|
||||
int8_col Int8,
|
||||
int16_col Int16,
|
||||
int32_col Int32,
|
||||
int64_col Int64,
|
||||
float32_col Float32,
|
||||
float64_col Float64,
|
||||
bool_col UInt8,
|
||||
str_col String,
|
||||
fixedstr_col FixedString(3),
|
||||
uuid_col UUID,
|
||||
date_col Date,
|
||||
datetime_col DateTime,
|
||||
enum_col Enum('hello' = 1, 'world' = 2),
|
||||
ary_uint8_col Array(UInt8),
|
||||
ary_str_col Array(String),
|
||||
tuple_col Tuple(UInt8, String),
|
||||
nullable_col Nullable(UInt8),
|
||||
nested_col Nested
|
||||
(
|
||||
nested_id UInt32,
|
||||
nested_str String
|
||||
),
|
||||
ipv4_col IPv4,
|
||||
ipv6_col IPv6,
|
||||
decimal_col Decimal(5,3)
|
||||
)
|
||||
ENGINE = MergeTree()
|
||||
ORDER BY (uint8_col);
|
@ -77,8 +77,8 @@ public class VMInfo {
|
||||
garbageCollectorMXBeanList = java.lang.management.ManagementFactory.getGarbageCollectorMXBeans();
|
||||
memoryPoolMXBeanList = java.lang.management.ManagementFactory.getMemoryPoolMXBeans();
|
||||
|
||||
osInfo = runtimeMXBean.getVmVendor() + " " + runtimeMXBean.getSpecVersion() + " " + runtimeMXBean.getVmVersion();
|
||||
jvmInfo = osMXBean.getName() + " " + osMXBean.getArch() + " " + osMXBean.getVersion();
|
||||
jvmInfo = runtimeMXBean.getVmVendor() + " " + runtimeMXBean.getSpecVersion() + " " + runtimeMXBean.getVmVersion();
|
||||
osInfo = osMXBean.getName() + " " + osMXBean.getArch() + " " + osMXBean.getVersion();
|
||||
totalProcessorCount = osMXBean.getAvailableProcessors();
|
||||
|
||||
//构建startPhyOSStatus
|
||||
|
@ -29,7 +29,7 @@ public class MemoryChannel extends Channel {
|
||||
|
||||
private ReentrantLock lock;
|
||||
|
||||
private Condition notInsufficient, notEmpty;
|
||||
private Condition notSufficient, notEmpty;
|
||||
|
||||
public MemoryChannel(final Configuration configuration) {
|
||||
super(configuration);
|
||||
@ -37,7 +37,7 @@ public class MemoryChannel extends Channel {
|
||||
this.bufferSize = configuration.getInt(CoreConstant.DATAX_CORE_TRANSPORT_EXCHANGER_BUFFERSIZE);
|
||||
|
||||
lock = new ReentrantLock();
|
||||
notInsufficient = lock.newCondition();
|
||||
notSufficient = lock.newCondition();
|
||||
notEmpty = lock.newCondition();
|
||||
}
|
||||
|
||||
@ -75,7 +75,7 @@ public class MemoryChannel extends Channel {
|
||||
lock.lockInterruptibly();
|
||||
int bytes = getRecordBytes(rs);
|
||||
while (memoryBytes.get() + bytes > this.byteCapacity || rs.size() > this.queue.remainingCapacity()) {
|
||||
notInsufficient.await(200L, TimeUnit.MILLISECONDS);
|
||||
notSufficient.await(200L, TimeUnit.MILLISECONDS);
|
||||
}
|
||||
this.queue.addAll(rs);
|
||||
waitWriterTime += System.nanoTime() - startTime;
|
||||
@ -116,7 +116,7 @@ public class MemoryChannel extends Channel {
|
||||
waitReaderTime += System.nanoTime() - startTime;
|
||||
int bytes = getRecordBytes(rs);
|
||||
memoryBytes.addAndGet(-bytes);
|
||||
notInsufficient.signalAll();
|
||||
notSufficient.signalAll();
|
||||
} catch (InterruptedException e) {
|
||||
throw DataXException.asDataXException(
|
||||
FrameworkErrorCode.RUNTIME_ERROR, e);
|
||||
|
193
neo4jwriter/doc/neo4jwriter.md
Normal file
193
neo4jwriter/doc/neo4jwriter.md
Normal file
@ -0,0 +1,193 @@
|
||||
# DataX neo4jWriter 插件文档
|
||||
|
||||
## 功能简介
|
||||
|
||||
本目前市面上的neo4j 批量导入主要有Cypher Create,Load CSV,第三方或者官方提供的Batch Import。Load CSV支持节点10W级别一下,Batch Import 需要对数据库进行停机。要想实现不停机的数据写入,Cypher是最好的方式。
|
||||
|
||||
## 支持版本
|
||||
|
||||
支持Neo4j 4 和Neo4j 5,如果是Neo4j 3,需要自行将驱动降低至相对应的版本进行编译。
|
||||
|
||||
## 实现原理
|
||||
|
||||
将datax的数据转换成了neo4j驱动能识别的对象,利用 unwind 语法进行批量插入。
|
||||
|
||||
## 如何配置
|
||||
|
||||
### 配置项介绍
|
||||
|
||||
| 配置 | 说明 | 是否必须 | 默认值 | 示例 |
|
||||
|:-------------------------------|--------------------| -------- | ------ | ---------------------------------------------------- |
|
||||
| database | 数据库名字 | 是 | - | neo4j |
|
||||
| uri | 数据库访问链接 | 是 | - | bolt://localhost:7687 |
|
||||
| username | 访问用户名 | 是 | - | neo4j |
|
||||
| password | 访问密码 | 是 | - | neo4j |
|
||||
| bearerToken | 权限相关 | 否 | - | - |
|
||||
| kerberosTicket | 权限相关 | 否 | - | - |
|
||||
| cypher | 同步语句 | 是 | - | unwind $batch as row create(p) set p.name = row.name |
|
||||
| batchDataVariableName | unwind 携带的数据变量名 | | | batch |
|
||||
| properties | 定义neo4j中数据的属性名字和类型 | 是 | - | 见后续案例 |
|
||||
| batchSize | 一批写入数据量 | 否 | 1000 | |
|
||||
| maxTransactionRetryTimeSeconds | 事务运行最长时间 | 否 | 30秒 | 30 |
|
||||
| maxConnectionTimeoutSeconds | 驱动最长链接时间 | 否 | 30秒 | 30 |
|
||||
| retryTimes | 发生错误的重试次数 | 否 | 3次 | 3 |
|
||||
| retrySleepMills | 重试失败后的等待时间 | 否 | 3秒 | 3 |
|
||||
|
||||
### 支持的数据类型
|
||||
> 配置时均忽略大小写
|
||||
```
|
||||
BOOLEAN,
|
||||
STRING,
|
||||
LONG,
|
||||
SHORT,
|
||||
INTEGER,
|
||||
DOUBLE,
|
||||
FLOAT,
|
||||
LOCAL_DATE,
|
||||
LOCAL_TIME,
|
||||
LOCAL_DATE_TIME,
|
||||
LIST,
|
||||
//map类型支持 . 属性表达式取值
|
||||
MAP,
|
||||
CHAR_ARRAY,
|
||||
BYTE_ARRAY,
|
||||
BOOLEAN_ARRAY,
|
||||
STRING_ARRAY,
|
||||
LONG_ARRAY,
|
||||
INT_ARRAY,
|
||||
SHORT_ARRAY,
|
||||
DOUBLE_ARRAY,
|
||||
FLOAT_ARRAY,
|
||||
Object_ARRAY
|
||||
```
|
||||
|
||||
### 写节点
|
||||
|
||||
这里提供了一个写节点包含很多类型属性的例子。你可以在我的测试方法中运行。
|
||||
|
||||
```json
|
||||
"writer": {
|
||||
"name": "neo4jWriter",
|
||||
"parameter": {
|
||||
"uri": "neo4j://localhost:7687",
|
||||
"username": "neo4j",
|
||||
"password": "Test@12343",
|
||||
"database": "neo4j",
|
||||
"cypher": "unwind $batch as row create(p:Person) set p.pbool = row.pbool,p.pstring = row.pstring,p.plong = row.plong,p.pshort = row.pshort,p.pdouble=row.pdouble,p.pstringarr=row.pstringarr,p.plocaldate=row.plocaldate",
|
||||
"batchDataVariableName": "batch",
|
||||
"batchSize": "33",
|
||||
"properties": [
|
||||
{
|
||||
"name": "pbool",
|
||||
"type": "BOOLEAN"
|
||||
},
|
||||
{
|
||||
"name": "pstring",
|
||||
"type": "STRING"
|
||||
},
|
||||
{
|
||||
"name": "plong",
|
||||
"type": "LONG"
|
||||
},
|
||||
{
|
||||
"name": "pshort",
|
||||
"type": "SHORT"
|
||||
},
|
||||
{
|
||||
"name": "pdouble",
|
||||
"type": "DOUBLE"
|
||||
},
|
||||
{
|
||||
"name": "pstringarr",
|
||||
"type": "STRING_ARRAY",
|
||||
"split": ","
|
||||
},
|
||||
{
|
||||
"name": "plocaldate",
|
||||
"type": "LOCAL_DATE",
|
||||
"dateFormat": "yyyy-MM-dd"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 写关系
|
||||
|
||||
```json
|
||||
"writer": {
|
||||
"name": "neo4jWriter",
|
||||
"parameter": {
|
||||
"uri": "neo4j://localhost:7687",
|
||||
"username": "neo4j",
|
||||
"password": "Test@12343",
|
||||
"database": "neo4j",
|
||||
"cypher": "unwind $batch as row match(p1:Person) where p1.id = row.startNodeId match(p2:Person) where p2.id = row.endNodeId create (p1)-[:LINK]->(p2)",
|
||||
"batchDataVariableName": "batch",
|
||||
"batch_size": "33",
|
||||
"properties": [
|
||||
{
|
||||
"name": "startNodeId",
|
||||
"type": "STRING"
|
||||
},
|
||||
{
|
||||
"name": "endNodeId",
|
||||
"type": "STRING"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 节点/关系类型动态写
|
||||
|
||||
> 需要使用AOPC函数拓展,如果你的数据库没有,请安装APOC函数拓展
|
||||
|
||||
```json
|
||||
"writer": {
|
||||
"name": "neo4jWriter",
|
||||
"parameter": {
|
||||
"uri": "bolt://localhost:7687",
|
||||
"username": "yourUserName",
|
||||
"password": "yourPassword",
|
||||
"database": "yourDataBase",
|
||||
"cypher": "unwind $batch as row CALL apoc.cypher.doIt( 'create (n:`' + row.Label + '`{id:$id})' ,{id: row.id} ) YIELD value RETURN 1 ",
|
||||
"batchDataVariableName": "batch",
|
||||
"batch_size": "1",
|
||||
"properties": [
|
||||
{
|
||||
"name": "Label",
|
||||
"type": "STRING"
|
||||
},
|
||||
{
|
||||
"name": "id",
|
||||
"type": "STRING"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 注意事项
|
||||
|
||||
* properties定义的顺序需要与reader端顺序一一对应。
|
||||
* 灵活使用map类型,可以免去很多数据加工的烦恼。在cypher中,可以根据 . 属性访问符号一直取值。比如 unwind $batch as row create (p) set p.name = row.prop.name,set p.age = row.prop.age,在这个例子中,prop是map类型,包含name和age两个属性。
|
||||
* 如果提示事务超时,建议调大事务运行时间或者调小batchSize
|
||||
* 如果用于更新场景,遇到死锁问题影响写入,建议二开源码加入死锁异常检测,并进行重试。
|
||||
|
||||
## 性能报告
|
||||
|
||||
**JVM参数**
|
||||
|
||||
16G G1垃圾收集器 8核心
|
||||
|
||||
**Neo4j数据库配置**
|
||||
|
||||
32核心,256G
|
||||
|
||||
**datax 配置**
|
||||
|
||||
* Channel 20 batchsize = 1000
|
||||
* 任务平均流量:15.23MB/s
|
||||
* 记录写入速度:44440 rec/s
|
||||
* 读出记录总数:2222013
|
90
neo4jwriter/pom.xml
Normal file
90
neo4jwriter/pom.xml
Normal file
@ -0,0 +1,90 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project xmlns="http://maven.apache.org/POM/4.0.0"
|
||||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
|
||||
<parent>
|
||||
<groupId>com.alibaba.datax</groupId>
|
||||
<artifactId>datax-all</artifactId>
|
||||
<version>0.0.1-SNAPSHOT</version>
|
||||
</parent>
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
|
||||
<artifactId>neo4jwriter</artifactId>
|
||||
<name>neo4jwriter</name>
|
||||
<packaging>jar</packaging>
|
||||
|
||||
<properties>
|
||||
<maven.compiler.source>8</maven.compiler.source>
|
||||
<maven.compiler.target>8</maven.compiler.target>
|
||||
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
|
||||
<neo4j-java-driver.version>4.4.9</neo4j-java-driver.version>
|
||||
<junit4.version>4.13.2</junit4.version>
|
||||
<test.container.version>1.17.6</test.container.version>
|
||||
</properties>
|
||||
<dependencies>
|
||||
<dependency>
|
||||
<groupId>org.slf4j</groupId>
|
||||
<artifactId>slf4j-api</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>ch.qos.logback</groupId>
|
||||
<artifactId>logback-classic</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.neo4j.driver</groupId>
|
||||
<artifactId>neo4j-java-driver</artifactId>
|
||||
<version>${neo4j-java-driver.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>com.alibaba.datax</groupId>
|
||||
<artifactId>datax-common</artifactId>
|
||||
<version>${datax-project-version}</version>
|
||||
</dependency>
|
||||
|
||||
<dependency>
|
||||
<groupId>org.testcontainers</groupId>
|
||||
<artifactId>testcontainers</artifactId>
|
||||
<version>${test.container.version}</version>
|
||||
</dependency>
|
||||
<!-- Testcontainers 1.x is tightly coupled with the JUnit 4.x rule API-->
|
||||
<dependency>
|
||||
<groupId>junit</groupId>
|
||||
<artifactId>junit</artifactId>
|
||||
<version>${junit4.version}</version>
|
||||
<scope>test</scope>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
<build>
|
||||
<plugins>
|
||||
<!-- compiler plugin -->
|
||||
<plugin>
|
||||
<artifactId>maven-compiler-plugin</artifactId>
|
||||
<configuration>
|
||||
<source>${jdk-version}</source>
|
||||
<target>${jdk-version}</target>
|
||||
<encoding>${project-sourceEncoding}</encoding>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<!-- assembly plugin -->
|
||||
<plugin>
|
||||
<artifactId>maven-assembly-plugin</artifactId>
|
||||
<configuration>
|
||||
<descriptors>
|
||||
<descriptor>src/main/assembly/package.xml</descriptor>
|
||||
</descriptors>
|
||||
<finalName>datax</finalName>
|
||||
</configuration>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>dwzip</id>
|
||||
<phase>package</phase>
|
||||
<goals>
|
||||
<goal>single</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</build>
|
||||
</project>
|
35
neo4jwriter/src/main/assembly/package.xml
Normal file
35
neo4jwriter/src/main/assembly/package.xml
Normal file
@ -0,0 +1,35 @@
|
||||
<assembly
|
||||
xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0"
|
||||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.0 http://maven.apache.org/xsd/assembly-1.1.0.xsd">
|
||||
<id></id>
|
||||
<formats>
|
||||
<format>dir</format>
|
||||
</formats>
|
||||
<includeBaseDirectory>false</includeBaseDirectory>
|
||||
<fileSets>
|
||||
<fileSet>
|
||||
<directory>src/main/resources</directory>
|
||||
<includes>
|
||||
<include>plugin.json</include>
|
||||
<include>plugin_job_template.json</include>
|
||||
</includes>
|
||||
<outputDirectory>plugin/writer/neo4jwriter</outputDirectory>
|
||||
</fileSet>
|
||||
<fileSet>
|
||||
<directory>target/</directory>
|
||||
<includes>
|
||||
<include>neo4jwriter-0.0.1-SNAPSHOT.jar</include>
|
||||
</includes>
|
||||
<outputDirectory>plugin/writer/neo4jwriter</outputDirectory>
|
||||
</fileSet>
|
||||
</fileSets>
|
||||
|
||||
<dependencySets>
|
||||
<dependencySet>
|
||||
<useProjectArtifact>false</useProjectArtifact>
|
||||
<outputDirectory>plugin/writer/neo4jwriter/libs</outputDirectory>
|
||||
<scope>runtime</scope>
|
||||
</dependencySet>
|
||||
</dependencySets>
|
||||
</assembly>
|
@ -0,0 +1,256 @@
|
||||
package com.alibaba.datax.plugin.writer.neo4jwriter;
|
||||
|
||||
|
||||
import com.alibaba.datax.common.element.Column;
|
||||
import com.alibaba.datax.common.element.Record;
|
||||
import com.alibaba.datax.common.exception.DataXException;
|
||||
import com.alibaba.datax.common.plugin.TaskPluginCollector;
|
||||
import com.alibaba.datax.common.util.Configuration;
|
||||
import com.alibaba.datax.common.util.RetryUtil;
|
||||
import com.alibaba.datax.plugin.writer.neo4jwriter.adapter.DateAdapter;
|
||||
import com.alibaba.datax.plugin.writer.neo4jwriter.adapter.ValueAdapter;
|
||||
import com.alibaba.datax.plugin.writer.neo4jwriter.config.Neo4jProperty;
|
||||
import com.alibaba.datax.plugin.writer.neo4jwriter.exception.Neo4jErrorCode;
|
||||
import com.alibaba.fastjson2.JSON;
|
||||
import org.apache.commons.lang3.StringUtils;
|
||||
import org.neo4j.driver.*;
|
||||
import org.neo4j.driver.exceptions.Neo4jException;
|
||||
import org.neo4j.driver.internal.value.MapValue;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import java.util.*;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
|
||||
import static com.alibaba.datax.plugin.writer.neo4jwriter.config.ConfigConstants.*;
|
||||
import static com.alibaba.datax.plugin.writer.neo4jwriter.exception.Neo4jErrorCode.DATABASE_ERROR;
|
||||
|
||||
public class Neo4jClient {
|
||||
private static final Logger LOGGER = LoggerFactory.getLogger(Neo4jClient.class);
|
||||
private Driver driver;
|
||||
|
||||
private WriteConfig writeConfig;
|
||||
private RetryConfig retryConfig;
|
||||
private TaskPluginCollector taskPluginCollector;
|
||||
|
||||
private Session session;
|
||||
|
||||
private List<MapValue> writerBuffer;
|
||||
|
||||
|
||||
public Neo4jClient(Driver driver,
|
||||
WriteConfig writeConfig,
|
||||
RetryConfig retryConfig,
|
||||
TaskPluginCollector taskPluginCollector) {
|
||||
this.driver = driver;
|
||||
this.writeConfig = writeConfig;
|
||||
this.retryConfig = retryConfig;
|
||||
this.taskPluginCollector = taskPluginCollector;
|
||||
this.writerBuffer = new ArrayList<>(writeConfig.batchSize);
|
||||
}
|
||||
|
||||
public void init() {
|
||||
String database = writeConfig.database;
|
||||
//neo4j 3.x 没有数据库
|
||||
if (null != database && !"".equals(database)) {
|
||||
this.session = driver.session(SessionConfig.forDatabase(database));
|
||||
} else {
|
||||
this.session = driver.session();
|
||||
}
|
||||
}
|
||||
|
||||
public static Neo4jClient build(Configuration config, TaskPluginCollector taskPluginCollector) {
|
||||
|
||||
Driver driver = buildNeo4jDriver(config);
|
||||
String cypher = checkCypher(config);
|
||||
String database = config.getString(DATABASE.getKey());
|
||||
String batchVariableName = config.getString(BATCH_DATA_VARIABLE_NAME.getKey(),
|
||||
BATCH_DATA_VARIABLE_NAME.getDefaultValue());
|
||||
List<Neo4jProperty> neo4jProperties = JSON.parseArray(config.getString(NEO4J_PROPERTIES.getKey()), Neo4jProperty.class);
|
||||
int batchSize = config.getInt(BATCH_SIZE.getKey(), BATCH_SIZE.getDefaultValue());
|
||||
int retryTimes = config.getInt(RETRY_TIMES.getKey(), RETRY_TIMES.getDefaultValue());
|
||||
|
||||
return new Neo4jClient(driver,
|
||||
new WriteConfig(cypher, database, batchVariableName, neo4jProperties, batchSize),
|
||||
new RetryConfig(retryTimes, config.getLong(RETRY_SLEEP_MILLS.getKey(), RETRY_SLEEP_MILLS.getDefaultValue())),
|
||||
taskPluginCollector
|
||||
);
|
||||
}
|
||||
|
||||
private static String checkCypher(Configuration config) {
|
||||
String cypher = config.getString(CYPHER.getKey());
|
||||
if (StringUtils.isBlank(cypher)) {
|
||||
throw DataXException.asDataXException(Neo4jErrorCode.CONFIG_INVALID, "cypher must not null or empty");
|
||||
}
|
||||
return cypher;
|
||||
}
|
||||
|
||||
private static Driver buildNeo4jDriver(Configuration config) {
|
||||
|
||||
Config.ConfigBuilder configBuilder = Config.builder().withMaxConnectionPoolSize(1);
|
||||
String uri = checkUriConfig(config);
|
||||
|
||||
//connection timeout
|
||||
//连接超时时间
|
||||
Long maxConnTime = config.getLong(MAX_CONNECTION_TIMEOUT_SECONDS.getKey(), MAX_TRANSACTION_RETRY_TIME.getDefaultValue());
|
||||
configBuilder
|
||||
.withConnectionAcquisitionTimeout(
|
||||
maxConnTime * 2, TimeUnit.SECONDS)
|
||||
.withConnectionTimeout(maxConnTime, TimeUnit.SECONDS);
|
||||
|
||||
|
||||
//transaction timeout
|
||||
//事务运行超时时间
|
||||
Long txRetryTime = config.getLong(MAX_TRANSACTION_RETRY_TIME.getKey(), MAX_TRANSACTION_RETRY_TIME.getDefaultValue());
|
||||
configBuilder.withMaxTransactionRetryTime(txRetryTime, TimeUnit.SECONDS);
|
||||
String username = config.getString(USERNAME.getKey());
|
||||
String password = config.getString(PASSWORD.getKey());
|
||||
String bearerToken = config.getString(BEARER_TOKEN.getKey());
|
||||
String kerberosTicket = config.getString(KERBEROS_TICKET.getKey());
|
||||
|
||||
if (StringUtils.isNotBlank(username) && StringUtils.isNotBlank(password)) {
|
||||
|
||||
return GraphDatabase.driver(uri, AuthTokens.basic(username, password), configBuilder.build());
|
||||
|
||||
} else if (StringUtils.isNotBlank(bearerToken)) {
|
||||
|
||||
return GraphDatabase.driver(uri, AuthTokens.bearer(bearerToken), configBuilder.build());
|
||||
|
||||
} else if (StringUtils.isNotBlank(kerberosTicket)) {
|
||||
|
||||
return GraphDatabase.driver(uri, AuthTokens.kerberos(kerberosTicket), configBuilder.build());
|
||||
|
||||
}
|
||||
|
||||
throw DataXException.asDataXException(Neo4jErrorCode.CONFIG_INVALID, "Invalid Auth config.");
|
||||
}
|
||||
|
||||
private static String checkUriConfig(Configuration config) {
|
||||
String uri = config.getString(URI.getKey());
|
||||
if (null == uri || uri.length() == 0) {
|
||||
throw DataXException.asDataXException(Neo4jErrorCode.CONFIG_INVALID, "Invalid uri configuration");
|
||||
}
|
||||
return uri;
|
||||
}
|
||||
|
||||
public void destroy() {
|
||||
tryFlushBuffer();
|
||||
if (driver != null) {
|
||||
driver.close();
|
||||
}
|
||||
if (session != null) {
|
||||
session.close();
|
||||
}
|
||||
DateAdapter.destroy();
|
||||
}
|
||||
|
||||
private void tryFlushBuffer() {
|
||||
if (!writerBuffer.isEmpty()) {
|
||||
doWrite(writerBuffer);
|
||||
writerBuffer.clear();
|
||||
}
|
||||
}
|
||||
|
||||
private void tryBatchWrite() {
|
||||
if (!writerBuffer.isEmpty() && writerBuffer.size() >= writeConfig.batchSize) {
|
||||
doWrite(writerBuffer);
|
||||
writerBuffer.clear();
|
||||
}
|
||||
}
|
||||
|
||||
private void doWrite(List<MapValue> values) {
|
||||
Value batchValues = Values.parameters(this.writeConfig.batchVariableName, values);
|
||||
Query query = new Query(this.writeConfig.cypher, batchValues);
|
||||
// LOGGER.debug("query:{}", query.text());
|
||||
// LOGGER.debug("batch:{}", toUnwindStr(values));
|
||||
try {
|
||||
RetryUtil.executeWithRetry(() -> {
|
||||
session.writeTransaction(tx -> tx.run(query));
|
||||
return null;
|
||||
}, this.retryConfig.retryTimes, retryConfig.retrySleepMills, true,
|
||||
Collections.singletonList(Neo4jException.class));
|
||||
} catch (Exception e) {
|
||||
LOGGER.error("an exception occurred while writing to the database,message:{}", e.getMessage());
|
||||
throw DataXException.asDataXException(DATABASE_ERROR, e.getMessage());
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
private String toUnwindStr(List<MapValue> values) {
|
||||
StringJoiner joiner = new StringJoiner(",");
|
||||
for (MapValue value : values) {
|
||||
joiner.add(value.toString());
|
||||
}
|
||||
return "[" + joiner + "]";
|
||||
}
|
||||
|
||||
public void tryWrite(Record record) {
|
||||
MapValue neo4jValue = checkAndConvert(record);
|
||||
writerBuffer.add(neo4jValue);
|
||||
tryBatchWrite();
|
||||
}
|
||||
|
||||
private MapValue checkAndConvert(Record record) {
|
||||
int sourceColNum = record.getColumnNumber();
|
||||
List<Neo4jProperty> neo4jProperties = writeConfig.neo4jProperties;
|
||||
if (neo4jProperties == null || neo4jProperties.size() != sourceColNum) {
|
||||
throw new DataXException(Neo4jErrorCode.CONFIG_INVALID, "the read and write columns do not match!");
|
||||
}
|
||||
Map<String, Value> data = new HashMap<>(sourceColNum * 4 / 3);
|
||||
for (int i = 0; i < sourceColNum; i++) {
|
||||
Column column = record.getColumn(i);
|
||||
Neo4jProperty neo4jProperty = neo4jProperties.get(i);
|
||||
try {
|
||||
|
||||
Value value = ValueAdapter.column2Value(column, neo4jProperty);
|
||||
data.put(neo4jProperty.getName(), value);
|
||||
} catch (Exception e) {
|
||||
LOGGER.info("dirty record:{},message :{}", column, e.getMessage());
|
||||
this.taskPluginCollector.collectDirtyRecord(record, e.getMessage());
|
||||
}
|
||||
}
|
||||
return new MapValue(data);
|
||||
}
|
||||
|
||||
public List<Neo4jProperty> getNeo4jFields() {
|
||||
return this.writeConfig.neo4jProperties;
|
||||
}
|
||||
|
||||
|
||||
static class RetryConfig {
|
||||
int retryTimes;
|
||||
long retrySleepMills;
|
||||
|
||||
RetryConfig(int retryTimes, long retrySleepMills) {
|
||||
this.retryTimes = retryTimes;
|
||||
this.retrySleepMills = retrySleepMills;
|
||||
}
|
||||
}
|
||||
|
||||
static class WriteConfig {
|
||||
String cypher;
|
||||
|
||||
String database;
|
||||
|
||||
String batchVariableName;
|
||||
|
||||
List<Neo4jProperty> neo4jProperties;
|
||||
|
||||
int batchSize;
|
||||
|
||||
public WriteConfig(String cypher,
|
||||
String database,
|
||||
String batchVariableName,
|
||||
List<Neo4jProperty> neo4jProperties,
|
||||
int batchSize) {
|
||||
this.cypher = cypher;
|
||||
this.database = database;
|
||||
this.batchVariableName = batchVariableName;
|
||||
this.neo4jProperties = neo4jProperties;
|
||||
this.batchSize = batchSize;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
@ -0,0 +1,63 @@
|
||||
package com.alibaba.datax.plugin.writer.neo4jwriter;
|
||||
|
||||
import com.alibaba.datax.common.plugin.RecordReceiver;
|
||||
import com.alibaba.datax.common.spi.Writer;
|
||||
import com.alibaba.datax.common.util.Configuration;
|
||||
import com.alibaba.datax.common.element.Record;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
public class Neo4jWriter extends Writer {
|
||||
public static class Job extends Writer.Job {
|
||||
private static final Logger LOGGER = LoggerFactory.getLogger(Job.class);
|
||||
|
||||
private Configuration jobConf = null;
|
||||
@Override
|
||||
public void init() {
|
||||
LOGGER.info("Neo4jWriter Job init success");
|
||||
}
|
||||
|
||||
@Override
|
||||
public void destroy() {
|
||||
LOGGER.info("Neo4jWriter Job destroyed");
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<Configuration> split(int mandatoryNumber) {
|
||||
List<Configuration> configurations = new ArrayList<Configuration>(mandatoryNumber);
|
||||
for (int i = 0; i < mandatoryNumber; i++) {
|
||||
configurations.add(this.jobConf.clone());
|
||||
}
|
||||
return configurations;
|
||||
}
|
||||
}
|
||||
|
||||
public static class Task extends Writer.Task {
|
||||
private static final Logger TASK_LOGGER = LoggerFactory.getLogger(Task.class);
|
||||
private Neo4jClient neo4jClient;
|
||||
@Override
|
||||
public void init() {
|
||||
Configuration taskConf = super.getPluginJobConf();
|
||||
this.neo4jClient = Neo4jClient.build(taskConf,getTaskPluginCollector());
|
||||
this.neo4jClient.init();
|
||||
TASK_LOGGER.info("neo4j writer task init success.");
|
||||
}
|
||||
|
||||
@Override
|
||||
public void destroy() {
|
||||
this.neo4jClient.destroy();
|
||||
TASK_LOGGER.info("neo4j writer task destroyed.");
|
||||
}
|
||||
|
||||
@Override
|
||||
public void startWrite(RecordReceiver receiver) {
|
||||
Record record;
|
||||
while ((record = receiver.getFromReader()) != null){
|
||||
this.neo4jClient.tryWrite(record);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,70 @@
|
||||
package com.alibaba.datax.plugin.writer.neo4jwriter.adapter;
|
||||
|
||||
|
||||
import com.alibaba.datax.plugin.writer.neo4jwriter.config.Neo4jProperty;
|
||||
import org.testcontainers.shaded.com.google.common.base.Supplier;
|
||||
|
||||
import java.time.LocalDate;
|
||||
import java.time.LocalDateTime;
|
||||
import java.time.LocalTime;
|
||||
import java.time.format.DateTimeFormatter;
|
||||
|
||||
/**
|
||||
* @author fuyouj
|
||||
*/
|
||||
public class DateAdapter {
|
||||
private static final ThreadLocal<DateTimeFormatter> LOCAL_DATE_FORMATTER_MAP = new ThreadLocal<>();
|
||||
private static final ThreadLocal<DateTimeFormatter> LOCAL_TIME_FORMATTER_MAP = new ThreadLocal<>();
|
||||
private static final ThreadLocal<DateTimeFormatter> LOCAL_DATE_TIME_FORMATTER_MAP = new ThreadLocal<>();
|
||||
private static final String DEFAULT_LOCAL_DATE_FORMATTER = "yyyy-MM-dd";
|
||||
private static final String DEFAULT_LOCAL_TIME_FORMATTER = "HH:mm:ss";
|
||||
private static final String DEFAULT_LOCAL_DATE_TIME_FORMATTER = "yyyy-MM-dd HH:mm:ss";
|
||||
|
||||
|
||||
public static LocalDate localDate(String text, Neo4jProperty neo4jProperty) {
|
||||
if (LOCAL_DATE_FORMATTER_MAP.get() != null) {
|
||||
return LocalDate.parse(text, LOCAL_DATE_FORMATTER_MAP.get());
|
||||
}
|
||||
|
||||
String format = getOrDefault(neo4jProperty::getDateFormat, DEFAULT_LOCAL_DATE_FORMATTER);
|
||||
DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern(format);
|
||||
LOCAL_DATE_FORMATTER_MAP.set(dateTimeFormatter);
|
||||
return LocalDate.parse(text, dateTimeFormatter);
|
||||
}
|
||||
|
||||
public static String getOrDefault(Supplier<String> dateFormat, String defaultFormat) {
|
||||
String format = dateFormat.get();
|
||||
if (null == format || "".equals(format)) {
|
||||
return defaultFormat;
|
||||
} else {
|
||||
return format;
|
||||
}
|
||||
}
|
||||
|
||||
public static void destroy() {
|
||||
LOCAL_DATE_FORMATTER_MAP.remove();
|
||||
LOCAL_TIME_FORMATTER_MAP.remove();
|
||||
LOCAL_DATE_TIME_FORMATTER_MAP.remove();
|
||||
}
|
||||
|
||||
public static LocalTime localTime(String text, Neo4jProperty neo4JProperty) {
|
||||
if (LOCAL_TIME_FORMATTER_MAP.get() != null) {
|
||||
return LocalTime.parse(text, LOCAL_TIME_FORMATTER_MAP.get());
|
||||
}
|
||||
|
||||
String format = getOrDefault(neo4JProperty::getDateFormat, DEFAULT_LOCAL_TIME_FORMATTER);
|
||||
DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern(format);
|
||||
LOCAL_TIME_FORMATTER_MAP.set(dateTimeFormatter);
|
||||
return LocalTime.parse(text, dateTimeFormatter);
|
||||
}
|
||||
|
||||
public static LocalDateTime localDateTime(String text, Neo4jProperty neo4JProperty) {
|
||||
if (LOCAL_DATE_TIME_FORMATTER_MAP.get() != null){
|
||||
return LocalDateTime.parse(text,LOCAL_DATE_TIME_FORMATTER_MAP.get());
|
||||
}
|
||||
String format = getOrDefault(neo4JProperty::getDateFormat, DEFAULT_LOCAL_DATE_TIME_FORMATTER);
|
||||
DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern(format);
|
||||
LOCAL_DATE_TIME_FORMATTER_MAP.set(dateTimeFormatter);
|
||||
return LocalDateTime.parse(text, dateTimeFormatter);
|
||||
}
|
||||
}
|
@ -0,0 +1,95 @@
|
||||
package com.alibaba.datax.plugin.writer.neo4jwriter.adapter;
|
||||
|
||||
|
||||
import com.alibaba.datax.common.element.Column;
|
||||
import com.alibaba.datax.plugin.writer.neo4jwriter.config.Neo4jProperty;
|
||||
import com.alibaba.datax.plugin.writer.neo4jwriter.element.PropertyType;
|
||||
import com.alibaba.fastjson2.JSON;
|
||||
import org.neo4j.driver.Value;
|
||||
import org.neo4j.driver.Values;
|
||||
import org.neo4j.driver.internal.value.NullValue;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.function.Function;
|
||||
|
||||
/**
|
||||
* @author fuyouj
|
||||
*/
|
||||
public class ValueAdapter {
|
||||
|
||||
|
||||
public static Value column2Value(final Column column, final Neo4jProperty neo4JProperty) {
|
||||
|
||||
String typeStr = neo4JProperty.getType();
|
||||
PropertyType type = PropertyType.fromStrIgnoreCase(typeStr);
|
||||
if (column.asString() == null) {
|
||||
return NullValue.NULL;
|
||||
}
|
||||
|
||||
switch (type) {
|
||||
case NULL:
|
||||
return NullValue.NULL;
|
||||
case MAP:
|
||||
return Values.value(JSON.parseObject(column.asString(), Map.class));
|
||||
case BOOLEAN:
|
||||
return Values.value(column.asBoolean());
|
||||
case STRING:
|
||||
return Values.value(column.asString());
|
||||
case INTEGER:
|
||||
case LONG:
|
||||
return Values.value(column.asLong());
|
||||
case SHORT:
|
||||
return Values.value(Short.valueOf(column.asString()));
|
||||
case FLOAT:
|
||||
case DOUBLE:
|
||||
return Values.value(column.asDouble());
|
||||
case BYTE_ARRAY:
|
||||
return Values.value(parseArrayType(neo4JProperty, column.asString(), Byte::valueOf));
|
||||
case CHAR_ARRAY:
|
||||
return Values.value(parseArrayType(neo4JProperty, column.asString(), (s) -> s.charAt(0)));
|
||||
case BOOLEAN_ARRAY:
|
||||
return Values.value(parseArrayType(neo4JProperty, column.asString(), Boolean::valueOf));
|
||||
case STRING_ARRAY:
|
||||
case Object_ARRAY:
|
||||
case LIST:
|
||||
return Values.value(parseArrayType(neo4JProperty, column.asString(), Function.identity()));
|
||||
case LONG_ARRAY:
|
||||
return Values.value(parseArrayType(neo4JProperty, column.asString(), Long::valueOf));
|
||||
case INT_ARRAY:
|
||||
return Values.value(parseArrayType(neo4JProperty, column.asString(), Integer::valueOf));
|
||||
case SHORT_ARRAY:
|
||||
return Values.value(parseArrayType(neo4JProperty, column.asString(), Short::valueOf));
|
||||
case DOUBLE_ARRAY:
|
||||
case FLOAT_ARRAY:
|
||||
return Values.value(parseArrayType(neo4JProperty, column.asString(), Double::valueOf));
|
||||
case LOCAL_DATE:
|
||||
return Values.value(DateAdapter.localDate(column.asString(), neo4JProperty));
|
||||
case LOCAL_TIME:
|
||||
return Values.value(DateAdapter.localTime(column.asString(), neo4JProperty));
|
||||
case LOCAL_DATE_TIME:
|
||||
return Values.value(DateAdapter.localDateTime(column.asString(), neo4JProperty));
|
||||
default:
|
||||
return Values.value(column.getRawData());
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
private static <R> List<R> parseArrayType(final Neo4jProperty neo4JProperty,
|
||||
final String strValue,
|
||||
final Function<String, R> convertFunc) {
|
||||
if (null == strValue || "".equals(strValue)) {
|
||||
return Collections.emptyList();
|
||||
}
|
||||
String split = neo4JProperty.getSplitOrDefault();
|
||||
String[] strArr = strValue.split(split);
|
||||
List<R> ans = new ArrayList<>();
|
||||
for (String s : strArr) {
|
||||
ans.add(convertFunc.apply(s));
|
||||
}
|
||||
return ans;
|
||||
}
|
||||
}
|
@ -0,0 +1,116 @@
|
||||
package com.alibaba.datax.plugin.writer.neo4jwriter.config;
|
||||
|
||||
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @author fuyouj
|
||||
*/
|
||||
public final class ConfigConstants {
|
||||
|
||||
public static final Long DEFAULT_MAX_TRANSACTION_RETRY_SECONDS = 30L;
|
||||
|
||||
public static final Long DEFAULT_MAX_CONNECTION_SECONDS = 30L;
|
||||
|
||||
|
||||
|
||||
public static final Option<Integer> RETRY_TIMES =
|
||||
Option.<Integer>builder()
|
||||
.key("retryTimes")
|
||||
.defaultValue(3)
|
||||
.desc("The number of overwrites when an error occurs")
|
||||
.build();
|
||||
|
||||
public static final Option<Long> RETRY_SLEEP_MILLS =
|
||||
Option.<Long>builder()
|
||||
.key("retrySleepMills")
|
||||
.defaultValue(3000L)
|
||||
.build();
|
||||
|
||||
/**
|
||||
* cluster mode please reference
|
||||
* <a href="https://neo4j.com/docs/java-manual/current/client-applications/">how to connect cluster mode</a>
|
||||
*/
|
||||
public static final Option<String> URI =
|
||||
Option.<String>builder()
|
||||
.key("uri")
|
||||
.noDefaultValue()
|
||||
.desc("uir of neo4j database")
|
||||
.build();
|
||||
|
||||
public static final Option<String> USERNAME =
|
||||
Option.<String>builder()
|
||||
.key("username")
|
||||
.noDefaultValue()
|
||||
.desc("username for accessing the neo4j database")
|
||||
.build();
|
||||
|
||||
public static final Option<String> PASSWORD =
|
||||
Option.<String>builder()
|
||||
.key("password")
|
||||
.noDefaultValue()
|
||||
.desc("password for accessing the neo4j database")
|
||||
.build();
|
||||
|
||||
public static final Option<String> BEARER_TOKEN =
|
||||
Option.<String>builder()
|
||||
.key("bearerToken")
|
||||
.noDefaultValue()
|
||||
.desc("base64 encoded bearer token of the Neo4j. for Auth.")
|
||||
.build();
|
||||
|
||||
public static final Option<String> KERBEROS_TICKET =
|
||||
Option.<String>builder()
|
||||
.key("kerberosTicket")
|
||||
.noDefaultValue()
|
||||
.desc("base64 encoded kerberos ticket of the Neo4j. for Auth.")
|
||||
.build();
|
||||
|
||||
public static final Option<String> DATABASE =
|
||||
Option.<String>builder()
|
||||
.key("database")
|
||||
.noDefaultValue()
|
||||
.desc("database name.")
|
||||
.build();
|
||||
|
||||
public static final Option<String> CYPHER =
|
||||
Option.<String>builder()
|
||||
.key("cypher")
|
||||
.noDefaultValue()
|
||||
.desc("cypher query.")
|
||||
.build();
|
||||
|
||||
public static final Option<Long> MAX_TRANSACTION_RETRY_TIME =
|
||||
Option.<Long>builder()
|
||||
.key("maxTransactionRetryTimeSeconds")
|
||||
.defaultValue(DEFAULT_MAX_TRANSACTION_RETRY_SECONDS)
|
||||
.desc("maximum transaction retry time(seconds). transaction fail if exceeded.")
|
||||
.build();
|
||||
public static final Option<Long> MAX_CONNECTION_TIMEOUT_SECONDS =
|
||||
Option.<Long>builder()
|
||||
.key("maxConnectionTimeoutSeconds")
|
||||
.defaultValue(DEFAULT_MAX_CONNECTION_SECONDS)
|
||||
.desc("The maximum amount of time to wait for a TCP connection to be established (seconds).")
|
||||
.build();
|
||||
|
||||
public static final Option<String> BATCH_DATA_VARIABLE_NAME =
|
||||
Option.<String>builder()
|
||||
.key("batchDataVariableName")
|
||||
.defaultValue("batch")
|
||||
.desc("in a cypher statement, a variable name that represents a batch of data")
|
||||
.build();
|
||||
|
||||
public static final Option<List<Neo4jProperty>> NEO4J_PROPERTIES =
|
||||
Option.<List<Neo4jProperty>>builder()
|
||||
.key("properties")
|
||||
.noDefaultValue()
|
||||
.desc("neo4j node or relation`s props")
|
||||
.build();
|
||||
|
||||
public static final Option<Integer> BATCH_SIZE =
|
||||
Option.<Integer>builder().
|
||||
key("batchSize")
|
||||
.defaultValue(1000)
|
||||
.desc("max batch size")
|
||||
.build();
|
||||
}
|
@ -0,0 +1,82 @@
|
||||
package com.alibaba.datax.plugin.writer.neo4jwriter.config;
|
||||
|
||||
/**
|
||||
* 由于dataX并不能传输数据的元数据,所以只能在writer端定义每列数据的名字
|
||||
* datax does not support data metadata,
|
||||
* only the name of each column of data can be defined on neo4j writer
|
||||
*
|
||||
* @author fuyouj
|
||||
*/
|
||||
public class Neo4jProperty {
|
||||
public static final String DEFAULT_SPLIT = ",";
|
||||
|
||||
/**
|
||||
* name of neo4j field
|
||||
*/
|
||||
private String name;
|
||||
|
||||
/**
|
||||
* neo4j type
|
||||
* reference by org.neo4j.driver.Values
|
||||
*/
|
||||
private String type;
|
||||
|
||||
/**
|
||||
* for date
|
||||
*/
|
||||
private String dateFormat;
|
||||
|
||||
/**
|
||||
* for array type
|
||||
*/
|
||||
private String split;
|
||||
|
||||
public Neo4jProperty() {
|
||||
}
|
||||
|
||||
public Neo4jProperty(String name, String type, String format, String split) {
|
||||
this.name = name;
|
||||
this.type = type;
|
||||
this.dateFormat = format;
|
||||
this.split = split;
|
||||
}
|
||||
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
public void setName(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
public String getType() {
|
||||
return type;
|
||||
}
|
||||
|
||||
public void setType(String type) {
|
||||
this.type = type;
|
||||
}
|
||||
|
||||
public String getDateFormat() {
|
||||
return dateFormat;
|
||||
}
|
||||
|
||||
public void setDateFormat(String dateFormat) {
|
||||
this.dateFormat = dateFormat;
|
||||
}
|
||||
|
||||
public String getSplit() {
|
||||
return getSplitOrDefault();
|
||||
}
|
||||
|
||||
public String getSplitOrDefault() {
|
||||
if (split == null || "".equals(split)) {
|
||||
return DEFAULT_SPLIT;
|
||||
}
|
||||
return split;
|
||||
}
|
||||
|
||||
public void setSplit(String split) {
|
||||
this.split = split;
|
||||
}
|
||||
}
|
@ -0,0 +1,65 @@
|
||||
package com.alibaba.datax.plugin.writer.neo4jwriter.config;
|
||||
|
||||
|
||||
public class Option<T> {
|
||||
|
||||
public static class Builder<T> {
|
||||
private String key;
|
||||
private String desc;
|
||||
|
||||
private T defaultValue;
|
||||
|
||||
public Builder<T> key(String key) {
|
||||
this.key = key;
|
||||
return this;
|
||||
}
|
||||
|
||||
public Builder<T> desc(String desc) {
|
||||
this.desc = desc;
|
||||
return this;
|
||||
}
|
||||
|
||||
public Builder<T> defaultValue(T defaultValue) {
|
||||
this.defaultValue = defaultValue;
|
||||
return this;
|
||||
}
|
||||
|
||||
public Builder<T> noDefaultValue() {
|
||||
return this;
|
||||
}
|
||||
|
||||
public Option<T> build() {
|
||||
return new Option<>(this.key, this.desc, this.defaultValue);
|
||||
}
|
||||
}
|
||||
|
||||
private final String key;
|
||||
private final String desc;
|
||||
|
||||
private final T defaultValue;
|
||||
|
||||
public Option(String key, String desc, T defaultValue) {
|
||||
this.key = key;
|
||||
this.desc = desc;
|
||||
this.defaultValue = defaultValue;
|
||||
}
|
||||
|
||||
public static <T> Builder<T> builder(){
|
||||
return new Builder<>();
|
||||
}
|
||||
|
||||
public String getKey() {
|
||||
return key;
|
||||
}
|
||||
|
||||
public String getDesc() {
|
||||
return desc;
|
||||
}
|
||||
|
||||
public T getDefaultValue() {
|
||||
if (defaultValue == null){
|
||||
throw new IllegalStateException(key + ":defaultValue is null");
|
||||
}
|
||||
return defaultValue;
|
||||
}
|
||||
}
|
@ -0,0 +1,40 @@
|
||||
package com.alibaba.datax.plugin.writer.neo4jwriter.element;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
/**
|
||||
* @see org.neo4j.driver.Values
|
||||
* @author fuyouj
|
||||
*/
|
||||
public enum PropertyType {
|
||||
NULL,
|
||||
BOOLEAN,
|
||||
STRING,
|
||||
LONG,
|
||||
SHORT,
|
||||
INTEGER,
|
||||
DOUBLE,
|
||||
FLOAT,
|
||||
LOCAL_DATE,
|
||||
LOCAL_TIME,
|
||||
LOCAL_DATE_TIME,
|
||||
LIST,
|
||||
MAP,
|
||||
CHAR_ARRAY,
|
||||
BYTE_ARRAY,
|
||||
BOOLEAN_ARRAY,
|
||||
STRING_ARRAY,
|
||||
LONG_ARRAY,
|
||||
INT_ARRAY,
|
||||
SHORT_ARRAY,
|
||||
DOUBLE_ARRAY,
|
||||
FLOAT_ARRAY,
|
||||
Object_ARRAY;
|
||||
|
||||
public static PropertyType fromStrIgnoreCase(String typeStr) {
|
||||
return Arrays.stream(PropertyType.values())
|
||||
.filter(e -> e.name().equalsIgnoreCase(typeStr))
|
||||
.findFirst()
|
||||
.orElse(PropertyType.STRING);
|
||||
}
|
||||
}
|
@ -0,0 +1,37 @@
|
||||
package com.alibaba.datax.plugin.writer.neo4jwriter.exception;
|
||||
|
||||
import com.alibaba.datax.common.spi.ErrorCode;
|
||||
|
||||
|
||||
public enum Neo4jErrorCode implements ErrorCode {
|
||||
|
||||
/**
|
||||
* Invalid configuration
|
||||
* 配置校验异常
|
||||
*/
|
||||
CONFIG_INVALID("NEO4J_ERROR_01","invalid configuration"),
|
||||
/**
|
||||
* database error
|
||||
* 在执行写入到数据库时抛出的异常,可能是权限异常,也可能是连接超时,或者是配置到了从节点。
|
||||
* 如果是更新操作,还会有死锁异常。具体原因根据报错信息确定,但是这与dataX无关。
|
||||
*/
|
||||
DATABASE_ERROR("NEO4J_ERROR_02","database error");
|
||||
|
||||
private final String code;
|
||||
private final String description;
|
||||
|
||||
@Override
|
||||
public String getCode() {
|
||||
return code;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getDescription() {
|
||||
return description;
|
||||
}
|
||||
|
||||
Neo4jErrorCode(String code, String description) {
|
||||
this.code = code;
|
||||
this.description = description;
|
||||
}
|
||||
}
|
6
neo4jwriter/src/main/resources/plugin.json
Normal file
6
neo4jwriter/src/main/resources/plugin.json
Normal file
@ -0,0 +1,6 @@
|
||||
{
|
||||
"name": "neo4jWriter",
|
||||
"class": "com.alibaba.datax.plugin.writer.neo4jwriter.Neo4jWriter",
|
||||
"description": "dataX neo4j 写插件",
|
||||
"developer": "付有杰"
|
||||
}
|
42
neo4jwriter/src/main/resources/plugin_job_template.json
Normal file
42
neo4jwriter/src/main/resources/plugin_job_template.json
Normal file
@ -0,0 +1,42 @@
|
||||
{
|
||||
"uri": "neo4j://localhost:7687",
|
||||
"username": "neo4j",
|
||||
"password": "Test@12343",
|
||||
"database": "neo4j",
|
||||
"cypher": "unwind $batch as row create(p:Person) set p.pbool = row.pbool,p.pstring = row.pstring,p.plong = row.plong,p.pshort = row.pshort,p.pdouble=row.pdouble,p.pstringarr=row.pstringarr,p.plocaldate=row.plocaldate",
|
||||
"batchDataVariableName": "batch",
|
||||
"batchSize": "33",
|
||||
"properties": [
|
||||
{
|
||||
"name": "pbool",
|
||||
//type 忽略大小写
|
||||
"type": "BOOLEAN"
|
||||
},
|
||||
{
|
||||
"name": "pstring",
|
||||
"type": "STRING"
|
||||
},
|
||||
{
|
||||
"name": "plong",
|
||||
"type": "LONG"
|
||||
},
|
||||
{
|
||||
"name": "pshort",
|
||||
"type": "SHORT"
|
||||
},
|
||||
{
|
||||
"name": "pdouble",
|
||||
"type": "DOUBLE"
|
||||
},
|
||||
{
|
||||
"name": "pstringarr",
|
||||
"type": "STRING_ARRAY",
|
||||
"split": ","
|
||||
},
|
||||
{
|
||||
"name": "plocaldate",
|
||||
"type": "LOCAL_DATE",
|
||||
"dateFormat": "yyyy-MM-dd"
|
||||
}
|
||||
]
|
||||
}
|
@ -0,0 +1,257 @@
|
||||
package com.alibaba.datax.plugin.writer;
|
||||
|
||||
|
||||
import com.alibaba.datax.common.element.Record;
|
||||
import com.alibaba.datax.common.element.StringColumn;
|
||||
import com.alibaba.datax.common.util.Configuration;
|
||||
import com.alibaba.datax.plugin.writer.mock.MockRecord;
|
||||
import com.alibaba.datax.plugin.writer.mock.MockUtil;
|
||||
import com.alibaba.datax.plugin.writer.neo4jwriter.Neo4jClient;
|
||||
import com.alibaba.datax.plugin.writer.neo4jwriter.config.Neo4jProperty;
|
||||
import com.alibaba.datax.plugin.writer.neo4jwriter.element.PropertyType;
|
||||
import org.junit.After;
|
||||
import org.junit.Before;
|
||||
import org.junit.Test;
|
||||
import org.neo4j.driver.*;
|
||||
import org.neo4j.driver.types.Node;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
import org.testcontainers.containers.GenericContainer;
|
||||
import org.testcontainers.containers.Network;
|
||||
import org.testcontainers.containers.output.Slf4jLogConsumer;
|
||||
import org.testcontainers.lifecycle.Startables;
|
||||
import org.testcontainers.shaded.org.awaitility.Awaitility;
|
||||
import org.testcontainers.utility.DockerImageName;
|
||||
import org.testcontainers.utility.DockerLoggerFactory;
|
||||
|
||||
import java.io.File;
|
||||
import java.net.URI;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertTrue;
|
||||
|
||||
|
||||
public class Neo4jWriterTest {
|
||||
|
||||
private static final Logger LOGGER = LoggerFactory.getLogger(Neo4jWriterTest.class);
|
||||
private static final int MOCK_NUM = 100;
|
||||
private static final String CONTAINER_IMAGE = "neo4j:5.9.0";
|
||||
|
||||
private static final String CONTAINER_HOST = "neo4j-host";
|
||||
private static final int HTTP_PORT = 7474;
|
||||
private static final int BOLT_PORT = 7687;
|
||||
private static final String CONTAINER_NEO4J_USERNAME = "neo4j";
|
||||
private static final String CONTAINER_NEO4J_PASSWORD = "Test@12343";
|
||||
private static final URI CONTAINER_URI = URI.create("neo4j://localhost:" + BOLT_PORT);
|
||||
|
||||
protected static final Network NETWORK = Network.newNetwork();
|
||||
|
||||
private GenericContainer<?> container;
|
||||
private Driver neo4jDriver;
|
||||
private Session neo4jSession;
|
||||
|
||||
@Before
|
||||
public void init() {
|
||||
DockerImageName imageName = DockerImageName.parse(CONTAINER_IMAGE);
|
||||
container =
|
||||
new GenericContainer<>(imageName)
|
||||
.withNetwork(NETWORK)
|
||||
.withNetworkAliases(CONTAINER_HOST)
|
||||
.withExposedPorts(HTTP_PORT, BOLT_PORT)
|
||||
.withEnv(
|
||||
"NEO4J_AUTH",
|
||||
CONTAINER_NEO4J_USERNAME + "/" + CONTAINER_NEO4J_PASSWORD)
|
||||
.withEnv("apoc.export.file.enabled", "true")
|
||||
.withEnv("apoc.import.file.enabled", "true")
|
||||
.withEnv("apoc.import.file.use_neo4j_config", "true")
|
||||
.withEnv("NEO4J_PLUGINS", "[\"apoc\"]")
|
||||
.withLogConsumer(
|
||||
new Slf4jLogConsumer(
|
||||
DockerLoggerFactory.getLogger(CONTAINER_IMAGE)));
|
||||
container.setPortBindings(
|
||||
Arrays.asList(
|
||||
String.format("%s:%s", HTTP_PORT, HTTP_PORT),
|
||||
String.format("%s:%s", BOLT_PORT, BOLT_PORT)));
|
||||
Startables.deepStart(Stream.of(container)).join();
|
||||
LOGGER.info("container started");
|
||||
Awaitility.given()
|
||||
.ignoreExceptions()
|
||||
.await()
|
||||
.atMost(30, TimeUnit.SECONDS)
|
||||
.untilAsserted(this::initConnection);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCreateNodeAllTypeField() {
|
||||
final Result checkExists = neo4jSession.run("MATCH (p:Person) RETURN p limit 1");
|
||||
if (checkExists.hasNext()) {
|
||||
neo4jSession.run("MATCH (p:Person) delete p");
|
||||
}
|
||||
|
||||
Configuration configuration = Configuration.from(new File("src/test/resources/allTypeFieldNode.json"));
|
||||
Neo4jClient neo4jClient = Neo4jClient.build(configuration, null);
|
||||
|
||||
neo4jClient.init();
|
||||
for (int i = 0; i < MOCK_NUM; i++) {
|
||||
neo4jClient.tryWrite(mockAllTypeFieldTestNode(neo4jClient.getNeo4jFields()));
|
||||
}
|
||||
neo4jClient.destroy();
|
||||
|
||||
|
||||
Result result = neo4jSession.run("MATCH (p:Person) return p");
|
||||
// nodes
|
||||
assertTrue(result.hasNext());
|
||||
int cnt = 0;
|
||||
while (result.hasNext()) {
|
||||
org.neo4j.driver.Record record = result.next();
|
||||
record.get("p").get("pbool").asBoolean();
|
||||
record.get("p").get("pstring").asString();
|
||||
record.get("p").get("plong").asLong();
|
||||
record.get("p").get("pshort").asInt();
|
||||
record.get("p").get("pdouble").asDouble();
|
||||
List list = (List) record.get("p").get("pstringarr").asObject();
|
||||
record.get("p").get("plocaldate").asLocalDate();
|
||||
cnt++;
|
||||
|
||||
}
|
||||
assertEquals(cnt, MOCK_NUM);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* 创建关系 必须先有节点
|
||||
* 所以先创建节点再模拟关系
|
||||
*/
|
||||
@Test
|
||||
public void testCreateRelation() {
|
||||
final Result checkExists = neo4jSession.run("MATCH (p1:Person)-[r:LINK]->(p1:Person) return r limit 1");
|
||||
if (checkExists.hasNext()) {
|
||||
neo4jSession.run("MATCH (p1:Person)-[r:LINK]->(p1:Person) delete r,p1,p2");
|
||||
}
|
||||
|
||||
String createNodeCql = "create (p:Person) set p.id = '%s'";
|
||||
Configuration configuration = Configuration.from(new File("src/test/resources/relationship.json"));
|
||||
|
||||
Neo4jClient neo4jClient = Neo4jClient.build(configuration, null);
|
||||
neo4jClient.init();
|
||||
//创建节点为后续写关系做准备
|
||||
//Create nodes to prepare for subsequent write relationships
|
||||
for (int i = 0; i < MOCK_NUM; i++) {
|
||||
neo4jSession.run(String.format(createNodeCql, i + "start"));
|
||||
neo4jSession.run(String.format(createNodeCql, i + "end"));
|
||||
Record record = new MockRecord();
|
||||
record.addColumn(new StringColumn(i + "start"));
|
||||
record.addColumn(new StringColumn(i + "end"));
|
||||
neo4jClient.tryWrite(record);
|
||||
|
||||
}
|
||||
neo4jClient.destroy();
|
||||
|
||||
Result result = neo4jSession.run("MATCH (start:Person)-[r:LINK]->(end:Person) return r,start,end");
|
||||
// relationships
|
||||
assertTrue(result.hasNext());
|
||||
int cnt = 0;
|
||||
while (result.hasNext()) {
|
||||
org.neo4j.driver.Record record = result.next();
|
||||
|
||||
Node startNode = record.get("start").asNode();
|
||||
assertTrue(startNode.hasLabel("Person"));
|
||||
assertTrue(startNode.asMap().containsKey("id"));
|
||||
|
||||
Node endNode = record.get("end").asNode();
|
||||
assertTrue(startNode.hasLabel("Person"));
|
||||
assertTrue(endNode.asMap().containsKey("id"));
|
||||
|
||||
|
||||
String name = record.get("r").type().name();
|
||||
assertEquals("RELATIONSHIP", name);
|
||||
cnt++;
|
||||
}
|
||||
assertEquals(cnt, MOCK_NUM);
|
||||
}
|
||||
|
||||
/**
|
||||
* neo4j中,Label和关系类型,想动态的写,需要借助于apoc函数
|
||||
*/
|
||||
@Test
|
||||
public void testUseApocCreateDynamicLabel() {
|
||||
List<String> dynamicLabel = new ArrayList<>();
|
||||
for (int i = 0; i < MOCK_NUM; i++) {
|
||||
dynamicLabel.add("Label" + i);
|
||||
}
|
||||
//删除原有数据
|
||||
//remove test data if exist
|
||||
//这种占位符的方式不支持批量动态写,当然可以使用union拼接,但是性能不好
|
||||
String query = "match (p:%s) return p";
|
||||
String delete = "match (p:%s) delete p";
|
||||
for (String label : dynamicLabel) {
|
||||
Result result = neo4jSession.run(String.format(query, label));
|
||||
if (result.hasNext()) {
|
||||
neo4jSession.run(String.format(delete, label));
|
||||
}
|
||||
}
|
||||
|
||||
Configuration configuration = Configuration.from(new File("src/test/resources/dynamicLabel.json"));
|
||||
Neo4jClient neo4jClient = Neo4jClient.build(configuration, null);
|
||||
|
||||
neo4jClient.init();
|
||||
for (int i = 0; i < dynamicLabel.size(); i++) {
|
||||
Record record = new MockRecord();
|
||||
record.addColumn(new StringColumn(dynamicLabel.get(i)));
|
||||
record.addColumn(new StringColumn(String.valueOf(i)));
|
||||
neo4jClient.tryWrite(record);
|
||||
}
|
||||
neo4jClient.destroy();
|
||||
|
||||
//校验脚本的批量写入是否正确
|
||||
int cnt = 0;
|
||||
for (int i = 0; i < dynamicLabel.size(); i++) {
|
||||
String label = dynamicLabel.get(i);
|
||||
Result result = neo4jSession.run(String.format(query, label));
|
||||
while (result.hasNext()) {
|
||||
org.neo4j.driver.Record record = result.next();
|
||||
Node node = record.get("p").asNode();
|
||||
assertTrue(node.hasLabel(label));
|
||||
assertEquals(node.asMap().get("id"), i + "");
|
||||
cnt++;
|
||||
}
|
||||
}
|
||||
assertEquals(cnt, MOCK_NUM);
|
||||
|
||||
}
|
||||
|
||||
|
||||
private Record mockAllTypeFieldTestNode(List<Neo4jProperty> neo4JProperties) {
|
||||
Record mock = new MockRecord();
|
||||
for (Neo4jProperty field : neo4JProperties) {
|
||||
mock.addColumn(MockUtil.mockColumnByType(PropertyType.fromStrIgnoreCase(field.getType())));
|
||||
}
|
||||
return mock;
|
||||
}
|
||||
|
||||
@After
|
||||
public void destroy() {
|
||||
if (neo4jSession != null) {
|
||||
neo4jSession.close();
|
||||
}
|
||||
if (neo4jDriver != null) {
|
||||
neo4jDriver.close();
|
||||
}
|
||||
if (container != null) {
|
||||
container.close();
|
||||
}
|
||||
}
|
||||
|
||||
private void initConnection() {
|
||||
neo4jDriver =
|
||||
GraphDatabase.driver(
|
||||
CONTAINER_URI,
|
||||
AuthTokens.basic(CONTAINER_NEO4J_USERNAME, CONTAINER_NEO4J_PASSWORD));
|
||||
neo4jSession = neo4jDriver.session(SessionConfig.forDatabase("neo4j"));
|
||||
}
|
||||
}
|
@ -0,0 +1,104 @@
|
||||
package com.alibaba.datax.plugin.writer.mock;
|
||||
|
||||
|
||||
import com.alibaba.datax.common.element.Column;
|
||||
import com.alibaba.datax.common.element.Record;
|
||||
import com.alibaba.fastjson2.JSON;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
public class MockRecord implements Record {
|
||||
private static final int RECORD_AVERGAE_COLUMN_NUMBER = 16;
|
||||
|
||||
private List<Column> columns;
|
||||
|
||||
private int byteSize;
|
||||
|
||||
|
||||
private Map<String, Object> meta;
|
||||
|
||||
public MockRecord() {
|
||||
this.columns = new ArrayList<>(RECORD_AVERGAE_COLUMN_NUMBER);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void addColumn(Column column) {
|
||||
columns.add(column);
|
||||
incrByteSize(column);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Column getColumn(int i) {
|
||||
if (i < 0 || i >= columns.size()) {
|
||||
return null;
|
||||
}
|
||||
return columns.get(i);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setColumn(int i, final Column column) {
|
||||
if (i < 0) {
|
||||
throw new IllegalArgumentException("不能给index小于0的column设置值");
|
||||
}
|
||||
|
||||
if (i >= columns.size()) {
|
||||
expandCapacity(i + 1);
|
||||
}
|
||||
|
||||
decrByteSize(getColumn(i));
|
||||
this.columns.set(i, column);
|
||||
incrByteSize(getColumn(i));
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
Map<String, Object> json = new HashMap<String, Object>();
|
||||
json.put("size", this.getColumnNumber());
|
||||
json.put("data", this.columns);
|
||||
return JSON.toJSONString(json);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getColumnNumber() {
|
||||
return this.columns.size();
|
||||
}
|
||||
|
||||
@Override
|
||||
public int getByteSize() {
|
||||
return byteSize;
|
||||
}
|
||||
|
||||
public int getMemorySize() {
|
||||
throw new UnsupportedOperationException();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setMeta(Map<String, String> meta) {
|
||||
|
||||
}
|
||||
|
||||
@Override
|
||||
public Map<String, String> getMeta() {
|
||||
return null;
|
||||
}
|
||||
|
||||
private void decrByteSize(final Column column) {
|
||||
}
|
||||
|
||||
private void incrByteSize(final Column column) {
|
||||
}
|
||||
|
||||
private void expandCapacity(int totalSize) {
|
||||
if (totalSize <= 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
int needToExpand = totalSize - columns.size();
|
||||
while (needToExpand-- > 0) {
|
||||
this.columns.add(null);
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,50 @@
|
||||
package com.alibaba.datax.plugin.writer.mock;
|
||||
|
||||
|
||||
import com.alibaba.datax.common.element.*;
|
||||
import com.alibaba.datax.plugin.writer.neo4jwriter.element.PropertyType;
|
||||
import com.alibaba.fastjson2.JSON;
|
||||
|
||||
import java.time.LocalDate;
|
||||
import java.time.format.DateTimeFormatter;
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
import java.util.Random;
|
||||
|
||||
public class MockUtil {
|
||||
|
||||
public static Column mockColumnByType(PropertyType type) {
|
||||
Random random = new Random();
|
||||
switch (type) {
|
||||
case SHORT:
|
||||
return new StringColumn("1");
|
||||
case BOOLEAN:
|
||||
return new BoolColumn(random.nextInt() % 2 == 0);
|
||||
case INTEGER:
|
||||
case LONG:
|
||||
return new LongColumn(random.nextInt(Integer.MAX_VALUE));
|
||||
case FLOAT:
|
||||
case DOUBLE:
|
||||
return new DoubleColumn(random.nextDouble());
|
||||
case NULL:
|
||||
return null;
|
||||
case BYTE_ARRAY:
|
||||
return new BytesColumn(new byte[]{(byte) (random.nextInt() % 2)});
|
||||
case LOCAL_DATE:
|
||||
return new StringColumn(LocalDate.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd")));
|
||||
case MAP:
|
||||
return new StringColumn(JSON.toJSONString(propmap()));
|
||||
case STRING_ARRAY:
|
||||
return new StringColumn("[1,1,1,1,1,1,1]");
|
||||
default:
|
||||
return new StringColumn("randomStr" + random.nextInt(Integer.MAX_VALUE));
|
||||
}
|
||||
}
|
||||
|
||||
public static Map<String, Object> propmap() {
|
||||
Map<String, Object> prop = new HashMap<>();
|
||||
prop.put("name", "neo4jWriter");
|
||||
prop.put("age", "1");
|
||||
return prop;
|
||||
}
|
||||
}
|
41
neo4jwriter/src/test/resources/allTypeFieldNode.json
Normal file
41
neo4jwriter/src/test/resources/allTypeFieldNode.json
Normal file
@ -0,0 +1,41 @@
|
||||
{
|
||||
"uri": "neo4j://localhost:7687",
|
||||
"username":"neo4j",
|
||||
"password":"Test@12343",
|
||||
"database":"neo4j",
|
||||
"cypher": "unwind $batch as row create(p:Person) set p.pbool = row.pbool,p.pstring = row.pstring,p.plong = row.plong,p.pshort = row.pshort,p.pdouble=row.pdouble,p.pstringarr=row.pstringarr,p.plocaldate=row.plocaldate",
|
||||
"batchDataVariableName": "batch",
|
||||
"batchSize": "33",
|
||||
"properties": [
|
||||
{
|
||||
"name": "pbool",
|
||||
"type": "BOOLEAN"
|
||||
},
|
||||
{
|
||||
"name": "pstring",
|
||||
"type": "STRING"
|
||||
},
|
||||
{
|
||||
"name": "plong",
|
||||
"type": "LONG"
|
||||
},
|
||||
{
|
||||
"name": "pshort",
|
||||
"type": "SHORT"
|
||||
},
|
||||
{
|
||||
"name": "pdouble",
|
||||
"type": "DOUBLE"
|
||||
},
|
||||
{
|
||||
"name": "pstringarr",
|
||||
"type": "STRING_ARRAY",
|
||||
"split": ","
|
||||
},
|
||||
{
|
||||
"name": "plocaldate",
|
||||
"type": "LOCAL_DATE",
|
||||
"dateFormat": "yyyy-MM-dd"
|
||||
}
|
||||
]
|
||||
}
|
19
neo4jwriter/src/test/resources/dynamicLabel.json
Normal file
19
neo4jwriter/src/test/resources/dynamicLabel.json
Normal file
@ -0,0 +1,19 @@
|
||||
{
|
||||
"uri": "bolt://localhost:7687",
|
||||
"username":"neo4j",
|
||||
"password":"Test@12343",
|
||||
"database":"neo4j",
|
||||
"cypher": "unwind $batch as row CALL apoc.cypher.doIt( 'create (n:`' + row.Label + '`{id:$id})' ,{id: row.id} ) YIELD value RETURN 1 ",
|
||||
"batchDataVariableName": "batch",
|
||||
"batchSize": "33",
|
||||
"properties": [
|
||||
{
|
||||
"name": "Label",
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"name": "id",
|
||||
"type": "STRING"
|
||||
}
|
||||
]
|
||||
}
|
19
neo4jwriter/src/test/resources/relationship.json
Normal file
19
neo4jwriter/src/test/resources/relationship.json
Normal file
@ -0,0 +1,19 @@
|
||||
{
|
||||
"uri": "neo4j://localhost:7687",
|
||||
"username":"neo4j",
|
||||
"password":"Test@12343",
|
||||
"database":"neo4j",
|
||||
"cypher": "unwind $batch as row match(p1:Person) where p1.id = row.startNodeId match(p2:Person) where p2.id = row.endNodeId create (p1)-[:LINK]->(p2)",
|
||||
"batchDataVariableName": "batch",
|
||||
"batchSize": "33",
|
||||
"properties": [
|
||||
{
|
||||
"name": "startNodeId",
|
||||
"type": "STRING"
|
||||
},
|
||||
{
|
||||
"name": "endNodeId",
|
||||
"type": "STRING"
|
||||
}
|
||||
]
|
||||
}
|
@ -1,6 +1,7 @@
|
||||
package com.alibaba.datax.plugin.reader.oceanbasev10reader.util;
|
||||
|
||||
import com.alibaba.datax.common.element.*;
|
||||
import com.alibaba.datax.plugin.rdbms.reader.util.ObVersion;
|
||||
import com.alibaba.datax.plugin.rdbms.reader.util.SingleTableSplitUtil;
|
||||
import com.alibaba.datax.plugin.rdbms.util.DBUtil;
|
||||
import com.alibaba.datax.plugin.rdbms.util.DataBaseType;
|
||||
|
@ -3,6 +3,7 @@ package com.alibaba.datax.plugin.reader.oceanbasev10reader.util;
|
||||
import com.alibaba.datax.common.util.Configuration;
|
||||
import com.alibaba.datax.plugin.rdbms.reader.Constant;
|
||||
import com.alibaba.datax.plugin.rdbms.reader.Key;
|
||||
import com.alibaba.datax.plugin.rdbms.reader.util.ObVersion;
|
||||
import com.alibaba.datax.plugin.rdbms.util.DBUtil;
|
||||
import com.alibaba.datax.plugin.rdbms.util.DataBaseType;
|
||||
import com.alibaba.datax.plugin.reader.oceanbasev10reader.ext.ObReaderKey;
|
||||
|
Binary file not shown.
@ -86,6 +86,7 @@ public class OceanBaseV10Writer extends Writer {
|
||||
if (tableNumber == 1) {
|
||||
this.commonJob.prepare(this.originalConfig);
|
||||
final String version = fetchServerVersion(originalConfig);
|
||||
ObWriterUtils.setObVersion(version);
|
||||
originalConfig.set(Config.OB_VERSION, version);
|
||||
}
|
||||
|
||||
@ -187,8 +188,9 @@ public class OceanBaseV10Writer extends Writer {
|
||||
}
|
||||
|
||||
private String fetchServerVersion(Configuration config) {
|
||||
final String fetchVersionSql = "show variables like 'version'";
|
||||
return DbUtils.fetchSingleValueWithRetry(config, fetchVersionSql);
|
||||
final String fetchVersionSql = "show variables like 'version_comment'";
|
||||
String versionComment = DbUtils.fetchSingleValueWithRetry(config, fetchVersionSql);
|
||||
return versionComment.split(" ")[1];
|
||||
}
|
||||
|
||||
private void checkCompatibleMode(Configuration configure) {
|
||||
|
@ -3,18 +3,17 @@ package com.alibaba.datax.plugin.writer.oceanbasev10writer.util;
|
||||
import com.alibaba.datax.common.util.Configuration;
|
||||
import com.alibaba.datax.plugin.rdbms.util.DBUtil;
|
||||
import com.alibaba.datax.plugin.rdbms.util.DataBaseType;
|
||||
import com.alibaba.datax.plugin.rdbms.writer.CommonRdbmsWriter;
|
||||
import com.alibaba.datax.plugin.rdbms.writer.Constant;
|
||||
import com.alibaba.datax.plugin.rdbms.writer.Key;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import com.alibaba.datax.plugin.writer.oceanbasev10writer.Config;
|
||||
import java.sql.Connection;
|
||||
import java.sql.PreparedStatement;
|
||||
import java.sql.ResultSet;
|
||||
import java.sql.SQLException;
|
||||
import java.util.List;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
public class DbUtils {
|
||||
|
||||
@ -34,9 +33,9 @@ public class DbUtils {
|
||||
Connection conn = null;
|
||||
PreparedStatement stmt = null;
|
||||
ResultSet result = null;
|
||||
boolean need_retry = false;
|
||||
String value = null;
|
||||
int retry = 0;
|
||||
int failTryCount = config.getInt(Config.FAIL_TRY_COUNT, Config.DEFAULT_FAIL_TRY_COUNT);
|
||||
do {
|
||||
try {
|
||||
if (retry > 0) {
|
||||
@ -58,13 +57,12 @@ public class DbUtils {
|
||||
LOG.info("value for query [{}] is [{}]", query, value);
|
||||
break;
|
||||
} catch (SQLException e) {
|
||||
need_retry = true;
|
||||
++retry;
|
||||
LOG.warn("fetch value with {} error {}", query, e);
|
||||
} finally {
|
||||
DBUtil.closeDBResources(result, stmt, conn);
|
||||
}
|
||||
} while (need_retry);
|
||||
} while (retry < failTryCount);
|
||||
|
||||
return value;
|
||||
}
|
||||
|
@ -1,5 +1,6 @@
|
||||
package com.alibaba.datax.plugin.writer.oceanbasev10writer.util;
|
||||
|
||||
import com.alibaba.datax.plugin.rdbms.reader.util.ObVersion;
|
||||
import com.alibaba.datax.plugin.rdbms.util.DBUtil;
|
||||
import com.alibaba.datax.plugin.rdbms.writer.CommonRdbmsWriter.Task;
|
||||
import com.alibaba.datax.plugin.writer.oceanbasev10writer.Config;
|
||||
@ -18,8 +19,11 @@ public class ObWriterUtils {
|
||||
private static final String ORACLE_KEYWORDS = "ACCESS,ADD,ALL,ALTER,AND,ANY,ARRAYLEN,AS,ASC,AUDIT,BETWEEN,BY,CHAR,CHECK,CLUSTER,COLUMN,COMMENT,COMPRESS,CONNECT,CREATE,CURRENT,DATE,DECIMAL,DEFAULT,DELETE,DESC,DISTINCT,DROP,ELSE,EXCLUSIVE,EXISTS,FILE,FLOAT,FOR,FROM,GRANT,GROUP,HAVING,IDENTIFIED,IMMEDIATE,IN,INCREMENT,INDEX,INITIAL,INSERT,INTEGER,INTERSECT,INTO,IS,LEVEL,LIKE,LOCK,LONG,MAXEXTENTS,MINUS,MODE,MODIFY,NOAUDIT,NOCOMPRESS,NOT,NOTFOUND,NOWAIT,NULL,NUMBER,OF,OFFLINE,ON,ONLINE,OPTION,OR,ORDER,PCTFREE,PRIOR,PRIVILEGES,PUBLIC,RAW,RENAME,RESOURCE,REVOKE,ROW,ROWID,ROWLABEL,ROWNUM,ROWS,SELECT,SESSION,SET,SHARE,SIZE,SMALLINT,SQLBUF,START,SUCCESSFUL,SYNONYM,TABLE,THEN,TO,TRIGGER,UID,UNION,UNIQUE,UPDATE,USER,VALIDATE,VALUES,VARCHAR,VARCHAR2,VIEW,WHENEVER,WHERE,WITH";
|
||||
|
||||
private static String CHECK_MEMSTORE = "select 1 from %s.gv$memstore t where t.total>t.mem_limit * ?";
|
||||
private static final String CHECK_MEMSTORE_4_0 = "select 1 from %s.gv$ob_memstore t where t.MEMSTORE_USED>t.MEMSTORE_LIMIT * ?";
|
||||
|
||||
private static Set<String> databaseKeywords;
|
||||
private static String compatibleMode = null;
|
||||
private static String obVersion = null;
|
||||
protected static final Logger LOG = LoggerFactory.getLogger(Task.class);
|
||||
private static Set<String> keywordsFromString2HashSet(final String keywords) {
|
||||
return new HashSet(Arrays.asList(keywords.split(",")));
|
||||
@ -61,7 +65,7 @@ public class ObWriterUtils {
|
||||
if (isOracleMode()) {
|
||||
sysDbName = "sys";
|
||||
}
|
||||
ps = conn.prepareStatement(String.format(CHECK_MEMSTORE, sysDbName));
|
||||
ps = conn.prepareStatement(String.format(getMemStoreSql(), sysDbName));
|
||||
ps.setDouble(1, memstoreThreshold);
|
||||
rs = ps.executeQuery();
|
||||
// 只要有满足条件的,则表示当前租户 有个机器的memstore即将满
|
||||
@ -81,6 +85,14 @@ public class ObWriterUtils {
|
||||
return (compatibleMode.equals(Config.OB_COMPATIBLE_MODE_ORACLE));
|
||||
}
|
||||
|
||||
private static String getMemStoreSql() {
|
||||
if (ObVersion.valueOf(obVersion).compareTo(ObVersion.V4000) >= 0) {
|
||||
return CHECK_MEMSTORE_4_0;
|
||||
} else {
|
||||
return CHECK_MEMSTORE;
|
||||
}
|
||||
}
|
||||
|
||||
public static String getCompatibleMode() {
|
||||
return compatibleMode;
|
||||
}
|
||||
@ -89,6 +101,10 @@ public class ObWriterUtils {
|
||||
compatibleMode = mode;
|
||||
}
|
||||
|
||||
public static void setObVersion(String version) {
|
||||
obVersion = version;
|
||||
}
|
||||
|
||||
private static String buildDeleteSql (String tableName, List<String> columns) {
|
||||
StringBuilder builder = new StringBuilder("DELETE FROM ");
|
||||
builder.append(tableName).append(" WHERE ");
|
||||
|
Binary file not shown.
14
package.xml
Executable file → Normal file
14
package.xml
Executable file → Normal file
@ -145,6 +145,13 @@
|
||||
</includes>
|
||||
<outputDirectory>datax</outputDirectory>
|
||||
</fileSet>
|
||||
<fileSet>
|
||||
<directory>clickhousereader/target/datax/</directory>
|
||||
<includes>
|
||||
<include>**/*.*</include>
|
||||
</includes>
|
||||
<outputDirectory>datax</outputDirectory>
|
||||
</fileSet>
|
||||
<fileSet>
|
||||
<directory>hdfsreader/target/datax/</directory>
|
||||
<includes>
|
||||
@ -497,5 +504,12 @@
|
||||
</includes>
|
||||
<outputDirectory>datax</outputDirectory>
|
||||
</fileSet>
|
||||
<fileSet>
|
||||
<directory>neo4jwriter/target/datax/</directory>
|
||||
<includes>
|
||||
<include>**/*.*</include>
|
||||
</includes>
|
||||
<outputDirectory>datax</outputDirectory>
|
||||
</fileSet>
|
||||
</fileSets>
|
||||
</assembly>
|
||||
|
@ -1,4 +1,4 @@
|
||||
package com.alibaba.datax.plugin.reader.oceanbasev10reader.util;
|
||||
package com.alibaba.datax.plugin.rdbms.reader.util;
|
||||
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
19
plugin-rdbms-util/src/main/java/com/alibaba/datax/plugin/rdbms/reader/util/SingleTableSplitUtil.java
Executable file → Normal file
19
plugin-rdbms-util/src/main/java/com/alibaba/datax/plugin/rdbms/reader/util/SingleTableSplitUtil.java
Executable file → Normal file
@ -7,6 +7,7 @@ import com.alibaba.datax.plugin.rdbms.reader.Key;
|
||||
import com.alibaba.datax.plugin.rdbms.util.*;
|
||||
import com.alibaba.fastjson2.JSON;
|
||||
|
||||
import java.text.MessageFormat;
|
||||
import org.apache.commons.lang3.StringUtils;
|
||||
import org.apache.commons.lang3.tuple.ImmutablePair;
|
||||
import org.apache.commons.lang3.tuple.Pair;
|
||||
@ -20,6 +21,7 @@ import java.sql.ResultSetMetaData;
|
||||
import java.sql.Types;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import static org.apache.commons.lang3.StringUtils.EMPTY;
|
||||
|
||||
public class SingleTableSplitUtil {
|
||||
private static final Logger LOG = LoggerFactory
|
||||
@ -277,6 +279,23 @@ public class SingleTableSplitUtil {
|
||||
String splitPK = configuration.getString(Key.SPLIT_PK).trim();
|
||||
String table = configuration.getString(Key.TABLE).trim();
|
||||
String where = configuration.getString(Key.WHERE, null);
|
||||
String obMode = configuration.getString("obCompatibilityMode");
|
||||
// OceanBase对SELECT MIN(%s),MAX(%s) FROM %s这条sql没有做查询改写,会进行全表扫描,在数据量的时候查询耗时很大甚至超时;
|
||||
// 所以对于OceanBase数据库,查询模板需要改写为分别查询最大值和最小值。这样可以提升查询数量级的性能。
|
||||
if (DATABASE_TYPE == DataBaseType.OceanBase && StringUtils.isNotEmpty(obMode)) {
|
||||
boolean isOracleMode = "ORACLE".equalsIgnoreCase(obMode);
|
||||
|
||||
String minMaxTemplate = isOracleMode ? "select v2.id as min_a, v1.id as max_a from ("
|
||||
+ "select * from (select %s as id from %s {0} order by id desc) where rownum =1 ) v1,"
|
||||
+ "(select * from (select %s as id from %s order by id asc) where rownum =1 ) v2;" :
|
||||
"select v2.id as min_a, v1.id as max_a from (select %s as id from %s {0} order by id desc limit 1) v1,"
|
||||
+ "(select %s as id from %s order by id asc limit 1) v2;";
|
||||
|
||||
String pkRangeSQL = String.format(minMaxTemplate, splitPK, table, splitPK, table);
|
||||
String whereString = StringUtils.isNotBlank(where) ? String.format("WHERE (%s AND %s IS NOT NULL)", where, splitPK) : EMPTY;
|
||||
pkRangeSQL = MessageFormat.format(pkRangeSQL, whereString);
|
||||
return pkRangeSQL;
|
||||
}
|
||||
return genPKSql(splitPK, table, where);
|
||||
}
|
||||
|
||||
|
2
pom.xml
2
pom.xml
@ -70,6 +70,7 @@
|
||||
<module>ftpreader</module>
|
||||
<module>txtfilereader</module>
|
||||
<module>streamreader</module>
|
||||
<module>clickhousereader</module>
|
||||
|
||||
<module>mongodbreader</module>
|
||||
<module>tdenginereader</module>
|
||||
@ -125,7 +126,6 @@
|
||||
<module>doriswriter</module>
|
||||
<module>selectdbwriter</module>
|
||||
<module>adbmysqlwriter</module>
|
||||
<module>sybasewriter</module>
|
||||
|
||||
<!-- common support module -->
|
||||
<module>plugin-rdbms-util</module>
|
||||
|
@ -78,7 +78,7 @@ public class StarRocksWriter extends Writer {
|
||||
List<String> renderedPostSqls = StarRocksWriterUtil.renderPreOrPostSqls(options.getPostSqlList(), options.getTable());
|
||||
if (null != renderedPostSqls && !renderedPostSqls.isEmpty()) {
|
||||
Connection conn = DBUtil.getConnection(DataBaseType.MySql, jdbcUrl, username, password);
|
||||
LOG.info("Begin to execute preSqls:[{}]. context info:{}.", String.join(";", renderedPostSqls), jdbcUrl);
|
||||
LOG.info("Begin to execute postSqls:[{}]. context info:{}.", String.join(";", renderedPostSqls), jdbcUrl);
|
||||
StarRocksWriterUtil.executeSqls(conn, renderedPostSqls);
|
||||
DBUtil.closeDBResources(null, null, conn);
|
||||
}
|
||||
|
@ -14,7 +14,7 @@ TDengineWriter can be used as a data migration tool for DBAs to import data from
|
||||
|
||||
TDengineWriter obtains the protocol data generated by Reader through DataX framework, connects to TDengine through JDBC Driver, executes insert statement /schemaless statement, and writes the data to TDengine.
|
||||
|
||||
In TDengine, table can be divided into super table, sub-table and ordinary table. Super table and sub-table include Colum and Tag. The value of tag column of sub-table is fixed value. (details please refer to: [data model](https://www.taosdata.com/docs/cn/v2.0/architecture#model))
|
||||
In TDengine, table can be divided into super table, sub-table and ordinary table. Super table and sub-table include Column and Tag. The value of tag column of sub-table is fixed value. (details please refer to: [data model](https://www.taosdata.com/docs/cn/v2.0/architecture#model))
|
||||
|
||||
The TDengineWriter can write data to super tables, sub-tables, and ordinary tables using the following methods based on the type of the table and whether the column parameter contains TBName:
|
||||
|
||||
|
@ -42,7 +42,7 @@ dx_substr(1,"5","10") column 1的value为“dataxTest”=>"Test"
|
||||
* 举例:
|
||||
```
|
||||
dx_replace(1,"2","4","****") column 1的value为“dataxTest”=>"da****est"
|
||||
dx_replace(1,"5","10","****") column 1的value为“dataxTest”=>"data****"
|
||||
dx_replace(1,"5","10","****") column 1的value为“dataxTest”=>"datax****"
|
||||
```
|
||||
4. dx_filter (关联filter暂不支持,即多个字段的联合判断,函参太过复杂,用户难以使用。)
|
||||
* 参数:
|
||||
|
@ -17,7 +17,7 @@ DataX本身作为数据同步框架,将不同数据源的同步抽象为从源
|
||||
|
||||
* 工具部署
|
||||
|
||||
* 方法一、直接下载DataX工具包:[DataX下载地址](https://datax-opensource.oss-cn-hangzhou.aliyuncs.com/202210/datax.tar.gz)
|
||||
* 方法一、直接下载DataX工具包:[DataX下载地址](https://datax-opensource.oss-cn-hangzhou.aliyuncs.com/202306/datax.tar.gz)
|
||||
|
||||
下载后解压至本地某个目录,进入bin目录,即可运行同步作业:
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user